Analytic Theory of L-functions

L-函数的解析理论

基本信息

  • 批准号:
    1601407
  • 负责人:
  • 金额:
    $ 10.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This research project centers on the connections between number theory and random matrix theory. In particular, the study of prime numbers and divisors is now influenced by the work of physicists in modeling high energy systems by understanding the statistics of random matrix theory. This project explores the relationship between these apparently independent areas of research. The work studies the analytic theory of L-functions, which are fundamental objects in number theory that encode arithmetic information. Examples include the Riemann zeta-function, which encodes information about prime numbers, Dirichlet L-functions, which encode information about the equidistribution of primes in arithmetic progressions, and the L-functions associated with modular forms, which encode the equidistribution of more complex sequences, including rational points on elliptic curves. The investigator aims to develop a theoretical framework to explain by number theoretic means the statistical behavior of the values and zeros of such L-functions.The investigator and collaborators plan work in a variety of projects, each involved with some aspect of L-functions. One project begins with a novel approach to understanding moments of the Riemann zeta-function through a study of convolutions of correlations of shifted divisor functions. This research incorporates a multidimensional discrete analogue of the Hardy-Littlewood Circle method. Another project is to improve bounds on the proportion of zeros of the Riemann zeta function on the critical line. A third project involves work related to an approach to the Riemann Hypothesis as a mollification problem; it is to understand an exact formula for the second moment of the zeta-function multiplied by a specific long Dirichlet polynomial. A fourth project is to prove that at least 60% of the zeros of Dirichlet L-functions are on the critical line.
This research project centers on the connections between number theory and random matrix theory. In particular, the study of prime numbers and divisors is now influenced by the work of physicists in modeling high energy systems by understanding the statistics of random matrix theory. This project explores the relationship between these apparently independent areas of research. The work studies the analytic theory of L-functions, which are fundamental objects in number theory that encode arithmetic information. Examples include the Riemann zeta-function, which encodes information about prime numbers, Dirichlet L-functions, which encode information about the equidistribution of primes in arithmetic progressions, and the L-functions associated with modular forms, which encode the equidistribution of more complex sequences, including rational points on elliptic curves. The investigator aims to develop a theoretical framework to explain by number theoretic means the statistical behavior of the values and zeros of such L-functions.The investigator and collaborators plan work in a variety of projects, each involved with some aspect of L-functions. One project begins with a novel approach to understanding moments of the Riemann zeta-function through a study of convolutions of correlations of shifted divisor functions. This research incorporates a multidimensional discrete analogue of the Hardy-Littlewood Circle method. Another project is to improve bounds on the proportion of zeros of the Riemann zeta function on the critical line. A third project involves work related to an approach to the Riemann Hypothesis as a mollification problem; it is to understand an exact formula for the second moment of the zeta-function multiplied by a specific long Dirichlet polynomial. A fourth project is to prove that at least 60% of the zeros of Dirichlet L-functions are on the critical line.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Conrey其他文献

John Conrey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Conrey', 18)}}的其他基金

Fifty Years of Number Theory and Random Matrix Theory
数论和随机矩阵论五十年
  • 批准号:
    2200884
  • 财政年份:
    2022
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
American Institute of Mathematics Research Conference Center: A Model for Collaboration
美国数学研究所研究会议中心:合作模式
  • 批准号:
    1929334
  • 财政年份:
    2020
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
FRG: Averages of L-functions and Arithmetic Stratification
FRG:L 函数的平均值和算术分层
  • 批准号:
    1854398
  • 财政年份:
    2019
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Perspectives on the Riemann Hypothesis
对黎曼猜想的看法
  • 批准号:
    1763338
  • 财政年份:
    2018
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
American Institute of Mathematics Research Conference Center: A Model for Collaboration
美国数学研究所研究会议中心:合作模式
  • 批准号:
    1638535
  • 财政年份:
    2017
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
American Institute of Mathematics Research Conference Center: A Model for Collaborative Research
美国数学研究所会议中心:合作研究的典范
  • 批准号:
    1128242
  • 财政年份:
    2012
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Investigating the Impact of Math Teachers' Circles on Mathematical Knowledge for Teaching and Classroom Practice
探究数学教师圈子对数学教学和课堂实践知识的影响
  • 批准号:
    1119342
  • 财政年份:
    2011
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Analytic Theory of L-functions
L-函数的解析理论
  • 批准号:
    1101774
  • 财政年份:
    2011
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Analytic Theory of L-functions
L-函数的解析理论
  • 批准号:
    0801264
  • 财政年份:
    2008
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
How to Run a Teacher's Circle
如何经营教师圈子
  • 批准号:
    0824511
  • 财政年份:
    2008
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Model theory of analytic functions
解析函数模型论
  • 批准号:
    2881804
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
  • 批准号:
    2344044
  • 财政年份:
    2023
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Analytic Number Theory and mean values of L-functions
解析数论和 L 函数的平均值
  • 批准号:
    2660863
  • 财政年份:
    2021
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
Model theory and quasiminimality for analytic functions
解析函数的模型理论和拟极小性
  • 批准号:
    2602989
  • 财政年份:
    2021
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
Model theory of expansions of fields with analytic functions
具有解析函数的域展开模型论
  • 批准号:
    2593855
  • 财政年份:
    2021
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
Numerical analysis of analytic functions based on hyperfunction theory
基于超函数理论的解析函数数值分析
  • 批准号:
    21K03366
  • 财政年份:
    2021
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
  • 批准号:
    2001183
  • 财政年份:
    2020
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Families of L-Functions and Analytic Number Theory
L 函数族和解析数论
  • 批准号:
    2001306
  • 财政年份:
    2020
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Model theory of analytic functions
解析函数模型论
  • 批准号:
    EP/T018461/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Fellowship
Analytic Number Theory and mean values of L-functions
解析数论和 L 函数的平均值
  • 批准号:
    2291432
  • 财政年份:
    2019
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了