Super-Approximation in Number Theory
数论中的超近似
基本信息
- 批准号:1602137
- 负责人:
- 金额:$ 23.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns work related to questions in group theory, number theory, and analysis with application to cyber security. Being able to provide points that look random, statistically, is extremely important both from applied and pure points of view. An illustration of the importance of the task is given by secure communications, such as bank transfers and other electronic commerce, which start with a scheme that picks a random pair of prime numbers from the collection of all primes of an appropriate size. Being sufficiently random is one of the requirements that keeps many such schemes secure. However, providing a random point from a pool of points is a computational task that is much harder than it might seem. This research project studies mathematical questions underpinning the random choice of elements of a set. One of the main aims of this project is to establish that, if the group of symmetries of a collection of points is complicated enough, then one can provide a pseudo-random point rather quickly, compared to the number of points. The main focus of this project is to develop a very concrete way of measuring how complicated a group is by using polynomial equations. As part of the project, the investigator plans to explore some of its applications to pure mathematics, for example, generalizations of the work on sum and product sets that says: given a finite set of integers, the collection of all possible pairwise sums, and, the collection of all possible pairwise products, these collections cannot both be small. The principal aim of this project is to prove the main conjecture of super-approximation and explore its applications to the other areas of mathematics. Super-approximation roughly says: whether a random walk (with respect to finitely many elements with algebraic entries) in invertible matrices over some topological ring, e.g., real numbers, p-adic numbers, or adeles, has spectral gap depends only on the Zariski closure of the group generated by the given set of matrices. In the past decade there has been substantial progress in this subject, and super-approximation has been shown to be extremely useful in various parts of mathematics, including number theory (affine sieve; variations of Galois representations) and group theory (sieve in groups; hyperbolic geometry; orbit equivalence rigidity). Another goal of this project is to find additional applications of super-approximation.
该研究项目涉及群论、数论和网络安全应用分析问题相关的工作。能够提供看起来随机的点,从应用和纯粹的角度来看都是非常重要的。安全通信,如银行转账和其他电子商务,可以说明这一任务的重要性,这些通信从一个从所有适当大小的素数集合中随机挑选一对素数的方案开始。足够的随机性是保持许多此类方案安全的要求之一。然而,从点池中提供一个随机点是一项计算任务,比看起来要困难得多。 本研究课题研究随机选择集合元素的数学问题。 这个项目的主要目标之一是建立,如果一组点的集合的对称性是足够复杂的,那么可以提供一个伪随机点,而不是点的数量。该项目的主要重点是开发一种非常具体的方法,通过使用多项式方程来测量一个组的复杂程度。作为该项目的一部分,研究人员计划探索其在纯数学中的一些应用,例如,总结和产品集的工作,即:给定一个有限的整数集,所有可能的成对和的集合,以及所有可能的成对产品的集合,这些集合不能都很小。该项目的主要目的是证明超逼近的主要猜想,并探索其在数学其他领域的应用。超近似大致说:是否在某个拓扑环上的可逆矩阵中的随机游走(相对于具有代数项的100多个元素),例如,真实的数、p-adic数或adeles的谱间隙仅取决于由给定的矩阵集生成的群的Zebrski闭包。在过去的十年里,这个问题已经取得了实质性的进展,超近似在数学的各个部分都非常有用,包括数论(仿射筛;伽罗瓦表示的变化)和群论(群筛;双曲几何;轨道等价刚性)。该项目的另一个目标是寻找超近似的其他应用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diameter of homogeneous spaces: an effective account
均匀空间的直径:一个有效的解释
- DOI:10.1007/s00208-022-02389-6
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Mohammadi, A.;Golsefidy, A. Salehi;Thilmany, F.
- 通讯作者:Thilmany, F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alireza Golsefidy其他文献
Alireza Golsefidy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alireza Golsefidy', 18)}}的其他基金
Random Walks in a Compact Group and Super-Approximation in Number Theory
紧群中的随机游走和数论中的超逼近
- 批准号:
1902090 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1303121 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1160472 - 财政年份:2011
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1001598 - 财政年份:2010
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
相似海外基金
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2022
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2021
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2020
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Random Walks in a Compact Group and Super-Approximation in Number Theory
紧群中的随机游走和数论中的超逼近
- 批准号:
1902090 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1755177 - 财政年份:2017
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: COLLABORATIVE RESEARCH: Super Approximation and Thin Groups, with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群,及其在几何、群和数论中的应用
- 批准号:
1463940 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463897 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463797 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant














{{item.name}}会员




