Super-Approximation in Number Theory
数论中的超近似
基本信息
- 批准号:1602137
- 负责人:
- 金额:$ 23.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns work related to questions in group theory, number theory, and analysis with application to cyber security. Being able to provide points that look random, statistically, is extremely important both from applied and pure points of view. An illustration of the importance of the task is given by secure communications, such as bank transfers and other electronic commerce, which start with a scheme that picks a random pair of prime numbers from the collection of all primes of an appropriate size. Being sufficiently random is one of the requirements that keeps many such schemes secure. However, providing a random point from a pool of points is a computational task that is much harder than it might seem. This research project studies mathematical questions underpinning the random choice of elements of a set. One of the main aims of this project is to establish that, if the group of symmetries of a collection of points is complicated enough, then one can provide a pseudo-random point rather quickly, compared to the number of points. The main focus of this project is to develop a very concrete way of measuring how complicated a group is by using polynomial equations. As part of the project, the investigator plans to explore some of its applications to pure mathematics, for example, generalizations of the work on sum and product sets that says: given a finite set of integers, the collection of all possible pairwise sums, and, the collection of all possible pairwise products, these collections cannot both be small. The principal aim of this project is to prove the main conjecture of super-approximation and explore its applications to the other areas of mathematics. Super-approximation roughly says: whether a random walk (with respect to finitely many elements with algebraic entries) in invertible matrices over some topological ring, e.g., real numbers, p-adic numbers, or adeles, has spectral gap depends only on the Zariski closure of the group generated by the given set of matrices. In the past decade there has been substantial progress in this subject, and super-approximation has been shown to be extremely useful in various parts of mathematics, including number theory (affine sieve; variations of Galois representations) and group theory (sieve in groups; hyperbolic geometry; orbit equivalence rigidity). Another goal of this project is to find additional applications of super-approximation.
这项研究项目涉及群论、数论和分析在网络安全中的应用等问题。从应用和纯粹的角度来看,能够提供从统计上看是随机的点数都是极其重要的。这项任务的重要性的一个例证是安全通信,如银行转账和其他电子商务,它们从一个方案开始,从所有适当大小的素数的集合中随机挑选一对素数。足够的随机性是保证许多此类方案安全的要求之一。然而,从一组点数中提供一个随机点是一项计算任务,比看起来要困难得多。这项研究项目研究的是支持随机选择集合元素的数学问题。这个项目的主要目标之一是确定,如果一组点的对称性足够复杂,那么与点的数量相比,可以相当快地提供一个伪随机点。这个项目的主要关注点是开发一种非常具体的方法,通过使用多项式方程来衡量一个群体的复杂程度。作为该项目的一部分,研究人员计划探索它在纯数学中的一些应用,例如,对关于和与乘积集的工作的推广:给定一个有限的整数集,所有可能的成对和的集合,以及所有可能的成对乘积的集合,这些集合不可能都是小的。这个项目的主要目的是证明超逼近的主要猜想,并探索它在其他数学领域的应用。超逼近粗略地说:在某些拓扑环上的可逆矩阵中的随机游动(关于具有代数项的有限个元素)是否有谱间隙,仅取决于给定的矩阵集所生成的群的Zariski闭包。在过去的十年里,这门学科取得了长足的进步,超逼近在数学的各个部分都被证明是非常有用的,包括数论(仿射筛子;伽罗瓦表示的变体)和群论(群筛子;双曲几何;轨道等价刚性)。这个项目的另一个目标是找到超逼近的其他应用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diameter of homogeneous spaces: an effective account
均匀空间的直径:一个有效的解释
- DOI:10.1007/s00208-022-02389-6
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Mohammadi, A.;Golsefidy, A. Salehi;Thilmany, F.
- 通讯作者:Thilmany, F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alireza Golsefidy其他文献
Alireza Golsefidy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alireza Golsefidy', 18)}}的其他基金
Random Walks in a Compact Group and Super-Approximation in Number Theory
紧群中的随机游走和数论中的超逼近
- 批准号:
1902090 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1303121 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1160472 - 财政年份:2011
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Discrete subgroups of semisimple Lie groups
半单李群的离散子群
- 批准号:
1001598 - 财政年份:2010
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
相似海外基金
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2022
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2021
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2020
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic vs. Uniform Approximation in Dynamical Systems and Number Theory
动力系统和数论中的渐近与一致逼近
- 批准号:
1900560 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
Random Walks in a Compact Group and Super-Approximation in Number Theory
紧群中的随机游走和数论中的超逼近
- 批准号:
1902090 - 财政年份:2019
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1755177 - 财政年份:2017
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: COLLABORATIVE RESEARCH: Super Approximation and Thin Groups, with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群,及其在几何、群和数论中的应用
- 批准号:
1463940 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463897 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463797 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Standard Grant














{{item.name}}会员




