FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
基本信息
- 批准号:1463897
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most fundamental objects in mathematics is the "group," a set with a rule analogous to multiplication for combining elements of the set. Groups can be viewed as precise ways to capture the symmetries of sets, shapes, and other mathematical objects. The last decade has seen an explosion of activity that can be viewed through the lens of what is called Super Approximation. Very roughly speaking, this refers to the idea that walking around randomly on the points of a group mixes things up very rapidly. The growth of this subject was swiftly followed by a variety of applications to geometry, groups, and number theory. The striking symbiosis of the resultant collection of problems and fields has inspired this team of researchers to unify and more deeply connect these and related themes of research, in order to make further advances. The Principal Investigators, as well as their postdocs and students, will work on a variety of projects concerned with the group theoretic, geometric, and number theoretic aspects of Super Approximation. Exponential sums and "Affine Sieve" methods will be developed further to "Local-Global" settings, including attacks on McMullen's Arithmetic Chaos Conjecture and Zaremba's Conjecture. The PIs will furthermore explore the use of privileged circle and sphere packings to understand the construction of trace (and invariant trace) fields for hyperbolic manifolds, a long-standing and almost completely untouched aspect of the theory. Moreover, the PIs will investigate the construction of interesting subgroups of arithmetic lattices via geometric deformations, as well as study problems in combinatorics and computer science.
数学中最基本的对象之一是“群”,一个集合,它有一个类似于乘法的规则来组合集合的元素。 组可以被看作是捕捉集合、形状和其他数学对象的对称性的精确方法。在过去的十年里,我们可以通过所谓的超级近似的透镜来观察活动的爆炸。非常粗略地说,这是指在一组点上随机走动会非常迅速地混淆事物的想法。这一主题的发展很快就被各种几何、群论和数论的应用所取代。由此产生的问题和领域的集合的惊人的共生性激发了这个研究团队统一和更深入地连接这些和相关的研究主题,以取得进一步的进展。主要研究人员,以及他们的博士后和学生,将致力于各种项目有关的群论,几何和数论方面的超近似。指数和和“仿射筛”方法将进一步发展到“局部-全局”设置,包括对McMullen算术混沌猜想和Zaremba猜想的攻击。PI将进一步探索使用特权圆和球填充来理解双曲流形的迹(和不变迹)场的构造,这是该理论的一个长期存在且几乎完全未触及的方面。此外,PI将通过几何变形研究算术格的有趣子群的构造,以及研究组合学和计算机科学中的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Lubotzky其他文献
Embedding covers and the theory of frobenius fields
- DOI:
10.1007/bf02771720 - 发表时间:
1982-09-01 - 期刊:
- 影响因子:0.800
- 作者:
Dan Haran;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
On some Λ-analytic pro-p groups
- DOI:
10.1007/bf02758646 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;Aner Shalev - 通讯作者:
Aner Shalev
Stability of homomorphisms, coverings and cocycles II: Examples, applications and open problems
同态、覆盖和上圈的稳定性 II:例子、应用和开放问题
- DOI:
10.1016/j.aim.2025.110117 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Discrete groups of slow subgroup growth
- DOI:
10.1007/bf02937313 - 发表时间:
1996-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;László Pyber;Aner Shalev - 通讯作者:
Aner Shalev
Stability of Homomorphisms, Coverings and Cocycles I: Equivalence
同态、覆盖和余循环的稳定性 I:等价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Alexander Lubotzky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Lubotzky', 18)}}的其他基金
High Dimensional Expanders and Ramanujan Complexes
高维扩展器和拉马努金复合体
- 批准号:
1404257 - 财政年份:2014
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
Lie Groups: Dynamics, Rigidity, Arithmetic
李群:动力学、刚性、算术
- 批准号:
0533495 - 财政年份:2006
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Discrete Groups, Expanding Graphs and Pro-P Methods
离散群、展开图和 Pro-P 方法
- 批准号:
0101174 - 财政年份:2001
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant