Loop Quantum Gravity with Cosmological Constant

具有宇宙学常数的环量子引力

基本信息

  • 批准号:
    1602867
  • 负责人:
  • 金额:
    $ 13.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

It is known that Einstein's General Relativity (GR) is theory to describe the gravitational physics. The theory of GR has helped us to make many tremendous progresses in understanding the fundamental aspect of space and time. The theory has been successful in describing the physics of universe, as well as making predictions for various astrophysical phenomena. However it is also well-known that the theory of GR is incomplete. It loses its capability of making predictions in the extremely strong gravitational field, e.g. inside a black hole, or at the very early stage of universe near the big bang. One of the most fundamental open questions in physics is how to complete GR in order to predict physics in an extremely strong gravitational field. The complete theory of gravity that we are searching for is called "Quantum Gravity". The theory of Quantum Gravity should play a crucial role in describing the physics inside black hole, and helping us to understand the early universe near the big bang. Eventually Quantum Gravity will lead us to a revolutionary understanding of space and time. The PI's group will also train students in STEM areas of research.This award support the development of a the theory of known as "Loop Quantum Gravity" (LQG). LQG is an approach toward Quantum Gravity featured with the background independence and non-perturbative quantization of spacetime structure. In developing the theory of LQG, the PI presented a promising new formulation of LQG with a cosmological constant. The new formulation defines finite spinfoam amplitudes of LQG. It also relates LQG to many other branches of physics and mathematics, in particular, it points out a concrete relation between LQG and String/M-Theory. The new formulation of LQG with a cosmological constant is going to be fully explored in this project, hopefully making progress towards some open issues in cosmology. The proposed work aims at (1) completing both the non-perturbative and perturbative formulation of the new model; (2) obtaining new insights and tools for LQG by exploring the relation to String/M-Theory and AdS/CFT; (3) extracting phenomenological predictions on the physics of cosmological constant. This project is expected to be an important step toward a complete formulation of LQG that could be empirically tested.
众所周知,爱因斯坦的广义相对论是描述引力物理的理论。GR理论帮助我们在理解空间和时间的基本方面取得了许多巨大的进步。该理论已经成功地描述了宇宙的物理学,以及对各种天体物理现象的预测。然而,众所周知,广义回归理论也是不完备的。它失去了在极强引力场中(例如在黑洞内)或在宇宙大爆炸附近的非常早期阶段进行预测的能力。物理学中最基本的悬而未决的问题之一是如何完成GR,以便预测极强引力场中的物理。我们正在寻找的完整的引力理论叫做“量子引力”。量子引力理论应该在描述黑洞内部的物理和帮助我们理解大爆炸附近的早期宇宙方面发挥至关重要的作用。最终,量子引力将引领我们对空间和时间的革命性理解。该小组还将在STEM研究领域对学生进行培训。该奖项支持一种被称为“循环量子引力”(LQG)的理论的发展。LQG是量子引力的一种方法,具有时空结构的背景无关性和非微扰量子化的特点。在发展LQG理论的过程中,PI提出了一种有希望的具有宇宙常数的LQG新公式。新配方定义了LQG的有限自旋泡沫幅度。它还将LQG与物理学和数学的许多其他分支联系起来,特别是指出了LQG与弦/M-理论之间的具体关系。具有宇宙学常数的LQG的新公式将在这个项目中得到充分的探索,有望在宇宙学中的一些开放问题上取得进展。这项工作的目的是(1)完成新模型的非微扰和微扰表述;(2)通过探索与弦/M理论和ADS/CFT的关系,为LQG获得新的见解和工具;(3)提取对宇宙常数物理的唯象预测。这个项目预计将是朝着可以进行经验测试的LQG完整配方迈出的重要一步。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic analysis of spin foam amplitude with timelike triangles
  • DOI:
    10.1103/physrevd.99.084040
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Hongguang Liu;Muxin Han
  • 通讯作者:
    Hongguang Liu;Muxin Han
$\operatorname{SL}(2,\mathbb{C})$ Chern-Simons theory, flat connections, and four-dimensional quantum geometry
  • DOI:
    10.4310/atmp.2019.v23.n4.a3
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Hal M. Haggard;Muxin Han;W. Kamiński;A. Riello
  • 通讯作者:
    Hal M. Haggard;Muxin Han;W. Kamiński;A. Riello
Local Density Matrices of Many-Body States in the Constant Weight Subspaces
恒权子空间中多体态的局域密度矩阵
  • DOI:
    10.1016/s0034-4877(19)30049-7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Chen, Jianxin;Han, Muxin;Li, Youning;Zeng, Bei;Zhou, Jie
  • 通讯作者:
    Zhou, Jie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muxin Han其他文献

Quantum Information Scrambling Through a High-Complexity Operator Mapping
  • DOI:
    doi.org/10.1103/PhysRevA.100.032309
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaopeng Li;Guanyu Zhu;Muxin Han;Xin Wang
  • 通讯作者:
    Xin Wang
Spinfoam on a Lefschetz thimble: Markov chain Monte Carlo computation of a Lorentzian spinfoam propagator
Lefschetz 顶针上的自旋泡沫:洛伦兹自旋泡沫传播器的马尔可夫链蒙特卡罗计算
  • DOI:
    10.1103/physrevd.103.084026
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Muxin Han;Zichang Huang;Hongguang Liu;Dongxue Qu;Yidun Wan
  • 通讯作者:
    Yidun Wan
Black Hole Entropy in Loop Quantum Gravity, Analytic Continuation, and Dual Holography
环量子引力中的黑洞熵、解析延拓和双全息术
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muxin Han
  • 通讯作者:
    Muxin Han
First-order quantum correction in coherent state expectation value of loop-quantum-gravity Hamiltonian
环量子引力哈密顿量相干态期望值的一阶量子校正
  • DOI:
    10.1103/physrevd.105.064008
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Cong Zhang;Shicong Song;Muxin Han
  • 通讯作者:
    Muxin Han
Fermions on Quantum Geometry and Resolution of Doubling Problem
量子几何中的费米子及倍增问题的解决
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cong Zhang;Hongguang Liu;Muxin Han
  • 通讯作者:
    Muxin Han

Muxin Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muxin Han', 18)}}的其他基金

Loop Quantum Gravity with Cosmological Constant
具有宇宙学常数的环量子引力
  • 批准号:
    2207763
  • 财政年份:
    2022
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant
Loop Quantum Gravity with Cosmological Constant
具有宇宙学常数的环量子引力
  • 批准号:
    1912278
  • 财政年份:
    2019
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Loop Quantum Gravity: from Computation to Phenomenology
环量子引力:从计算到现象学
  • 批准号:
    RGPIN-2020-06561
  • 财政年份:
    2022
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Discovery Grants Program - Individual
Loop Quantum Gravity with Cosmological Constant
具有宇宙学常数的环量子引力
  • 批准号:
    2207763
  • 财政年份:
    2022
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant
Midisuperspace Laboratories for Loop Quantum Gravity
环量子引力中超空间实验室
  • 批准号:
    2206557
  • 财政年份:
    2022
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Standard Grant
Loop Quantum Gravity: from Computation to Phenomenology
环量子引力:从计算到现象学
  • 批准号:
    RGPIN-2020-06561
  • 财政年份:
    2021
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Discovery Grants Program - Individual
Loop Quantum Gravity: from Computation to Phenomenology
环量子引力:从计算到现象学
  • 批准号:
    RGPIN-2020-06561
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Discovery Grants Program - Individual
Loop Quantum Gravity: from Computation to Phenomenology
环量子引力:从计算到现象学
  • 批准号:
    DGECR-2020-00228
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Discovery Launch Supplement
Loop Quantum Gravity with Cosmological Constant
具有宇宙学常数的环量子引力
  • 批准号:
    1912278
  • 财政年份:
    2019
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant
Midisuperspace Laboratories for the Dynamics of Loop Quantum Gravity
中超空间环量子引力动力学实验室
  • 批准号:
    1903799
  • 财政年份:
    2019
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant
Midisuperspace laboratories for the dynamics of loop quantum gravity
中超空间圈量子引力动力学实验室
  • 批准号:
    1603630
  • 财政年份:
    2016
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Continuing Grant
Loop Quantum gravity and spinfoam models, a quantum description of space-time?
循环量子引力和自旋泡沫模型,时空的量子描述?
  • 批准号:
    452316-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了