SusChEM - Collaborative Research: Universal Understanding of Push-Pull D-A compounds and Prescriptive Materials Design for Optimized Bulk-Heterojunction Photovoltaics

SusChEM - 合作研究:推挽 D-A 化合物的普遍理解和优化体异质结光伏的规范材料设计

基本信息

  • 批准号:
    1603461
  • 负责人:
  • 金额:
    $ 15.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The sun represents the most abundant potential source of sustainable energy on earth. Solar cells that use organic conducting polymers to convert light to electricity ? organic photovoltaic devices - offer a potentially low-cost route for renewable electricity production. In general, the low cost is offered through use of potentially inexpensive polymer materials and scalable polymer film based processing. However, current organic polymer solar cells currently suffer from low efficiencies combined with high material costs. Since improved materials are critical to commercial viability, the goal of this project is to develop and characterize more effective, low cost, sustainable, materials for organic photovoltaic devices. These new materials will be based on the squaraines, a class of organic dye materials. The key innovation of this effort is the development and use of theoretical modeling tools to screen for the best candidate molecules that optimize device performance characteristics. The candidate materials will then be synthesized using methods of green chemistry to enable low cost, sustainable materials that preserve the desired properties. The educational activities associated with this project will provide research participation opportunities for hearing-impaired students through the National Institute for the Deaf at the Rochester Institute of Technology.Organic polymer-based photovoltaic (OPV) solar cells currently suffer from low efficiencies and high manufacturing costs, due in part to difficulties associated with attaining tight polymer morphology control. Higher efficiencies can be obtained with donor-acceptor type compounds designed to address bandgap and energy level requirements, if the molecular design rules can be realized from a first-principles perspective to optimize material properties for best device performance. Squaraines are class of organic photoconductors that offer several potential advantages as small band gap organic molecules for OPV devices, including ease of purification, scalable and consistent synthesis, and tunable functionality for prescriptive molecular design. This research will combine theory, materials synthesis, and critical property characterization studies to develop a fundamental framework for molecular design of donor-acceptor molecules in OPV devices based on squaraine compounds. The first objective is to develop and use theoretical models to simulate the morphology-based spectroscopy for a series of squaraines, compounds representative of the total set of done-acceptor type OPV targets. The theory will describe how morphological and molecular structure influences critical processes, including absorption spectrum, the excited states, and the intermolecular charge transfer integral. Thus, when the models are experimentally validated through spectroscopy, a more complete understanding of these processes will lead to a prescriptive design for idealized materials optimized at all critical properties needed for OPV, including solar spectrum absorption overlap, exciton diffusion, exciton dissociation, and charge transport. Based on the findings from the first objective, under the second objective, squaraines will be modified for processing in non-toxic solvents to enable low cost, sustainable, and scalable materials synthesis. Device fabrication and testing will confirm which critical OPV properties have been improved in these materials. Overall, this research is expected to lead to a more a comprehensive understanding of the excited state properties of squaraines, optimization of their critical properties for best OPV device performance based on rational molecular design, and scalable and sustainable methods for the synthesis of these materials and their integration into bulk heterojunction OPV devices.
太阳是地球上最丰富的可持续能源的潜在来源。 使用有机导电聚合物将光转化为电的太阳能电池?有机光伏器件-为可再生电力生产提供了一条潜在的低成本途径。 通常,通过使用潜在廉价的聚合物材料和可扩展的基于聚合物膜的加工来提供低成本。 然而,目前的有机聚合物太阳能电池目前遭受低效率与高材料成本的组合。由于改进的材料对商业可行性至关重要,因此该项目的目标是开发和表征更有效,低成本,可持续的有机光伏器件材料。 这些新材料将基于方酸菁,一类有机染料材料。这项工作的关键创新是开发和使用理论建模工具来筛选优化器件性能特征的最佳候选分子。 然后将使用绿色化学方法合成候选材料,以实现低成本,可持续的材料,保持所需的性能。 与该项目相关的教育活动将通过罗切斯特理工学院的国家聋人研究所为听力受损的学生提供参与研究的机会。有机聚合物基光伏(OPV)太阳能电池目前效率低、制造成本高,部分原因是难以实现严格的聚合物形态控制。 如果分子设计规则可以从第一原理的角度实现以优化材料性质以获得最佳器件性能,则可以利用设计用于解决带隙和能级要求的供体-受体型化合物获得更高的效率。 方酸菁是一类有机光电导体,其作为用于OPV器件的小带隙有机分子提供若干潜在优点,包括易于纯化、可扩展和一致的合成以及用于规定性分子设计的可调功能性。 本研究将结合联合收割机理论、材料合成和临界性质表征研究,为基于方酸菁化合物的OPV器件中的供体-受体分子的分子设计开发基本框架。 第一个目标是开发和使用理论模型来模拟一系列方酸胺的基于形态的光谱,方酸胺是代表全部受体型OPV靶点的化合物。该理论将描述形态和分子结构如何影响关键过程,包括吸收光谱,激发态和分子间电荷转移积分。因此,当模型通过光谱学进行实验验证时,对这些过程的更完整的理解将导致在OPV所需的所有关键特性(包括太阳光谱吸收重叠,激子扩散,激子解离和电荷传输)上优化理想化材料的规定性设计。 基于第一个目标的发现,在第二个目标下,方酸菁将被改性用于在无毒溶剂中加工,以实现低成本,可持续和可扩展的材料合成。 器件制造和测试将确认这些材料中哪些关键的OPV特性得到了改善。 总的来说,这项研究有望导致更全面地了解方酸的激发态性质,基于合理的分子设计优化其关键性质以获得最佳OPV器件性能,以及合成这些材料并将其集成到本体异质结OPV器件中的可扩展和可持续方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Spano其他文献

Francis Spano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Spano', 18)}}的其他基金

Understanding Excimers in Molecular J- and H-aggregates: A Holstein-Peierls Approach
了解分子 J 和 H 聚集体中的准分子:荷斯坦-佩尔斯方法
  • 批准号:
    2221923
  • 财政年份:
    2023
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Modeling Molecular Aggregate Photophysics in Free Space and in Optical Microcavities
模拟自由空间和光学微腔中的分子聚集体光物理
  • 批准号:
    1810838
  • 财政年份:
    2018
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Excitonic Coupling in Molecular and Polymeric Aggregates: Beyond Conventional J- and H-aggregation
分子和聚合物聚集体中的激子耦合:超越传统的 J 和 H 聚集
  • 批准号:
    1505437
  • 财政年份:
    2015
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
DMREF - Collaborative Research: Developing design rules for enhancing mobility in conjugated polymers
DMREF - 协作研究:开发增强共轭聚合物迁移率的设计规则
  • 批准号:
    1533954
  • 财政年份:
    2015
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Modeling the Optical Properties of Conjugated Polymer Assemblies: Interchain Vs. Intrachain Interactions
共轭聚合物组装体光学性质的建模:链间与链间的比较
  • 批准号:
    1203811
  • 财政年份:
    2012
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Using Circularly Polarized Light to Probe Electronic Excitations in Organic Supramolecular Assemblies
使用圆偏振光探测有机超分子组装体中的电子激发
  • 批准号:
    0906464
  • 财政年份:
    2009
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Optical Excitations in Supramolecular Assemblies of Conjugated Oligomers and Polymers
共轭低聚物和聚合物超分子组装体中的光激发
  • 批准号:
    0606028
  • 财政年份:
    2006
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Optical Excitations in Aggregates, Films and Crystals of Conjugated Oligomers and Polymers
共轭低聚物和聚合物的聚集体、薄膜和晶体中的光激发
  • 批准号:
    0305173
  • 财政年份:
    2003
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Optical Excitations in Conjugated Oligomer and Polymer Aggregates: A Computational Approach
共轭低聚物和聚合物聚集体中的光激发:一种计算方法
  • 批准号:
    0071802
  • 财政年份:
    2000
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Theory of the Nonlinear Optical Response in One-dimensional Systems: Charge vs. Energy Transfer
一维系统中的非线性光学响应理论:电荷与能量转移
  • 批准号:
    9312029
  • 财政年份:
    1994
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803630
  • 财政年份:
    2018
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803677
  • 财政年份:
    2018
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes
合作研究:SusChEM:解锁油脂化学生产酶选择性的基本机制
  • 批准号:
    1703504
  • 财政年份:
    2017
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Environmental Fate and Effects of Dichloroacetamide Safeners: An Overlooked Class of Emerging Contaminants?
SusChEM:合作研究:二氯乙酰胺安全剂的环境命运和影响:一类被忽视的新兴污染物?
  • 批准号:
    1702610
  • 财政年份:
    2017
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergistic effects in plasma-catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703211
  • 财政年份:
    2017
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了