Excitonic Coupling in Molecular and Polymeric Aggregates: Beyond Conventional J- and H-aggregation

分子和聚合物聚集体中的激子耦合:超越传统的 J 和 H 聚集

基本信息

  • 批准号:
    1505437
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYOrganic molecules and polymers continue to receive attention as semiconducting materials in a wide array of practical applications, including paper electronics, solid-state lighting, solar cells and scaffolds for tissue growth. Most devices benefit from rapid energy transport, which is dictated by how fast an electronic excitation on one molecule can be transferred to a more distant molecule. However, despite the more than five decades of intensive experimental and theoretical research, there are still many questions regarding the nature of the electronic excitations in organic molecular aggregates, thin films and crystals. The main objective of the proposed research is to develop a theory of electronic coupling between molecules which takes into account the organization of molecules relative to each other. This theory will provide information about the rate of energy transfer and will reveal important information about the properties of the electronic excitations, information that can be used to design more efficient devices. The PI's group will also explore the use of optical microcavities for controlling material properties. Microcavities consist of two mirrors separated by a very short distance of the order of one millionth of a meter. The interaction between light and matter is greatly amplified for materials inserted between such mirrors. The proposed research will benefit from collaborations with the experimental groups at the University of Massachusetts and the University of Montreal. The broader impact of the proposed research will be in an enhanced understanding of the photophysical and transport properties of a technologically important class of materials. The commercial impact of organic electronic devices is expected to dramatically increase over the next decade through products like flexible displays, electronic labels, solid-state lighting and solar cells. The wide array of photophysical and transport behaviors afforded by molecular aggregates studied in this proposal could provide the basis for novel design paradigms for efficient solar absorbers and light emitting materials.TECHNICAL SUMMARYThe main goal of the proposed research is to develop a theory for the photophysical response of molecular aggregates which accounts for the simultaneous presence of long-range Coulombic interactions and short-range charge-transfer (CT) interactions between the constituent molecules. The theory will consider the electronic coupling, the electronic-nuclear coupling, and diagonal and off-diagonal disorder on equal footing and will extend the conventional J- and H-aggregate model of Kasha to systems such as molecular pi-stacks, in which the very close proximity between neighboring molecules allows for significant overlap between molecular orbitals. Investigations are planned to understand the photophysical and transport properties of different aggregate types and how such aggregates evolve into conventional H- and J-aggregates as the adiabatic CT exciton is tuned away from the parent Frenkel exciton. Studies will also be undertaken to determine how aggregate properties are altered by immersion into a tuned optical microcavity. The analyses will be based on Holstein-like Hamiltonians represented in a one- and two-particle basis set. Fundamental excitations and their spectral signatures will be evaluated using numerical matrix techniques. Specific applications will be made to rylene pi-stacks which have been studied as dye pigments and electron-transporting materials, as well as poly(3-hexylthiophene) pi-stacks which make excellent exciton transporting materials in photovoltaic devices. The proposed research will benefit from collaborations with the experimental groups at the University of Massachusetts and the University of Montreal. The broader impact of the proposed research will be in an enhanced understanding of the photophysical and transport properties of a technologically important class of materials. The commercial impact of organic electronic devices is expected to dramatically increase over the next decade through products like flexible displays, electronic labels, solid-state lighting and solar cells. The wide array of photophysical and transport behaviors afforded by molecular aggregates studied in this proposal could provide the basis for novel design paradigms for efficient solar absorbers and light emitting materials.
非技术概述有机分子和聚合物作为半导体材料在广泛的实际应用中继续受到关注,包括纸张电子、固态照明、太阳能电池和用于组织生长的支架。大多数设备都受益于快速的能量传输,这取决于一个分子上的电子激发转移到更远的分子上的速度。然而,尽管经过了50多年的深入实验和理论研究,有机分子聚集体、薄膜和晶体中电子激发的性质仍然存在许多问题。这项拟议研究的主要目标是发展一种分子之间的电子耦合理论,该理论考虑了分子之间的相对组织。这一理论将提供有关能量转移率的信息,并将揭示有关电子激发性质的重要信息,这些信息可用于设计更有效的设备。PI的小组还将探索使用光学微腔来控制材料属性。微腔由两面镜子组成,两面镜子之间的距离很短,约为百万分之一米。光和物质之间的相互作用被插入到这种镜子之间的材料大大放大。这项拟议的研究将受益于与马萨诸塞大学和蒙特利尔大学的实验小组的合作。拟议研究的更广泛影响将是加强对一类具有重要技术意义的材料的光物理和传输性质的了解。通过柔性显示器、电子标签、固态照明和太阳能电池等产品,有机电子设备的商业影响力预计将在未来十年大幅增加。分子聚集体所提供的广泛的光物理和输运行为可以为设计高效的太阳能吸收器和发光材料提供新的范例。技术总结本研究的主要目标是发展一种分子聚集体的光物理响应理论,该理论可以解释分子之间同时存在长程库仑相互作用和短程电荷转移(CT)相互作用。该理论将在平等的基础上考虑电子耦合、电子-核耦合以及对角和非对角无序,并将传统的Kasha的J-和H-聚集体模型扩展到诸如分子pi-Stack这样的系统,其中相邻分子之间的非常接近允许分子轨道之间的显著重叠。研究计划了解不同类型聚集体的光物理和输运性质,以及当绝热CT激子调谐远离母Frenkel激子时,这些聚集体如何演化为传统的H-和J-聚集体。还将进行研究,以确定如何通过浸入调谐的光学微腔来改变聚集体的性质。分析将基于以单粒子和两粒子基集表示的类似荷斯坦的哈密顿。基波激发及其光谱特征将使用数值矩阵技术进行评估。作为染料颜料和电子传输材料的亚甲苯聚酰亚胺,以及在光伏器件中作为激子传输材料的聚(3-己基噻吩基)聚芳基聚乙二烯,都将作为特殊的应用。这项拟议的研究将受益于与马萨诸塞大学和蒙特利尔大学的实验小组的合作。拟议研究的更广泛影响将是加强对一类具有重要技术意义的材料的光物理和传输性质的了解。通过柔性显示器、电子标签、固态照明和太阳能电池等产品,有机电子设备的商业影响力预计将在未来十年大幅增加。该方案中所研究的分子聚集体所提供的广泛的光物理和传输行为可以为高效的太阳能吸收器和发光材料的新的设计范例提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Spano其他文献

Francis Spano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Spano', 18)}}的其他基金

Understanding Excimers in Molecular J- and H-aggregates: A Holstein-Peierls Approach
了解分子 J 和 H 聚集体中的准分子:荷斯坦-佩尔斯方法
  • 批准号:
    2221923
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Modeling Molecular Aggregate Photophysics in Free Space and in Optical Microcavities
模拟自由空间和光学微腔中的分子聚集体光物理
  • 批准号:
    1810838
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
SusChEM - Collaborative Research: Universal Understanding of Push-Pull D-A compounds and Prescriptive Materials Design for Optimized Bulk-Heterojunction Photovoltaics
SusChEM - 合作研究:推挽 D-A 化合物的普遍理解和优化体异质结光伏的规范材料设计
  • 批准号:
    1603461
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
DMREF - Collaborative Research: Developing design rules for enhancing mobility in conjugated polymers
DMREF - 协作研究:开发增强共轭聚合物迁移率的设计规则
  • 批准号:
    1533954
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Modeling the Optical Properties of Conjugated Polymer Assemblies: Interchain Vs. Intrachain Interactions
共轭聚合物组装体光学性质的建模:链间与链间的比较
  • 批准号:
    1203811
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Using Circularly Polarized Light to Probe Electronic Excitations in Organic Supramolecular Assemblies
使用圆偏振光探测有机超分子组装体中的电子激发
  • 批准号:
    0906464
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Optical Excitations in Supramolecular Assemblies of Conjugated Oligomers and Polymers
共轭低聚物和聚合物超分子组装体中的光激发
  • 批准号:
    0606028
  • 财政年份:
    2006
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Optical Excitations in Aggregates, Films and Crystals of Conjugated Oligomers and Polymers
共轭低聚物和聚合物的聚集体、薄膜和晶体中的光激发
  • 批准号:
    0305173
  • 财政年份:
    2003
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Optical Excitations in Conjugated Oligomer and Polymer Aggregates: A Computational Approach
共轭低聚物和聚合物聚集体中的光激发:一种计算方法
  • 批准号:
    0071802
  • 财政年份:
    2000
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Theory of the Nonlinear Optical Response in One-dimensional Systems: Charge vs. Energy Transfer
一维系统中的非线性光学响应理论:电荷与能量转移
  • 批准号:
    9312029
  • 财政年份:
    1994
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

天然酯绝缘油粘度/闪点分子结构耦合机制及调控方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
等级孔分子筛耦合贵金属催化剂的合成及催化机制研究
  • 批准号:
    JCZRQN202500101
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双原子-光电耦合驱动微生物催化二氧化碳甲烷转化的诱导调控分子机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
储能可视化柔性电致变色超级电容器的力电响应机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
热力耦合作用下共结晶高分子共混网络 的变形机理与本构模型
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
光与原子耦合系统中的非互易量子相变及其调控研究
  • 批准号:
    QN25A050005
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
二维有机分子晶体电声耦合作用下热电输运性质及性能调控研究
  • 批准号:
    2025JJ60059
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
界面耦合增强的Mott中波红外高速光电突触特性与器件研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高温耦合氮营养盐介导珊瑚共生体固碳 和储碳的分子机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
AIE分子强电子-振动耦合效应在危爆品传感过程中的影响机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Exploration of novel electromagnetic coupling in organic conductors by the combination of molecular arrangement and magnetic ordering
分子排列与磁有序相结合探索有机导体中新型电磁耦合
  • 批准号:
    23K03333
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intercalated disc-nuclear lamina coupling as a molecular substrate for arrhythmogenic cardiomyopathy
闰盘-核层耦合作为致心律失常性心肌病的分子底物
  • 批准号:
    10713689
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
CAREER: Gas-Phase Molecular Polaritons: A New Platform for Chemistry under Strong Light-Matter Coupling
职业:气相分子极化子:强光-物质耦合下的化学新平台
  • 批准号:
    2238865
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Coupling Epitranscriptomics to Molecular Disease Mechanisms and Nucleic Acid Therapeutics in Persistent Residual HIV Infection
表观转录组学与持续残留 HIV 感染的分子疾病机制和核酸治疗的耦合
  • 批准号:
    10462348
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Coupling Epitranscriptomics to Molecular Disease Mechanisms and Nucleic Acid Therapeutics in Persistent Residual HIV Infection
表观转录组学与持续残留 HIV 感染的分子疾病机制和核酸治疗的耦合
  • 批准号:
    10615203
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Coupling Epitranscriptomics to Molecular Disease Mechanisms and Nucleic Acid Therapeutics in Persistent Residual HIV Infection
表观转录组学与持续残留 HIV 感染的分子疾病机制和核酸治疗的耦合
  • 批准号:
    10907304
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of molecular mechanisms of metabolic disorders caused by de-coupling Glucose/Fructose metabolism.
葡萄糖/果糖代谢解偶联引起代谢紊乱的分子机制分析。
  • 批准号:
    21K08542
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了