Collaborative Research: Understanding, Mitigating, and Controlling Frost Formation Through the Use of Biphilic and Hybrid Surfaces Under Static and Dynamic Conditions
合作研究:通过在静态和动态条件下使用双亲和混合表面来理解、减轻和控制霜的形成
基本信息
- 批准号:1604183
- 负责人:
- 金额:$ 21.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
#1604183Betz, Amy R.Frost formation is a common occurrence that penalizes energy consumption; it builds up in freezers, covers car windows, and prevents heat pump air-conditioners from properly functioning. It also has harmful effects in applications such as airplane safety and reliability. This research will investigate new surfaces that combine water-attracting and water-repelling regions to prevent and control frost formation. During the frost formation process, water coexists as vapor, liquid, and solid phases. By using surfaces with resilient and optimally positioned interlaced patterns of water-attracting and water-repelling regions, the transport of the water is controlled before it freezes. Preliminary results show that controlling the transport of water in the liquid and vapor phases can significantly increase the amount of time it takes for freezing to occur and even prevent frost altogether for certain temperature ranges. Even after water initially freezes on a surface, frost continues to grow three-dimensionally leading to thick build-up of frost. The growth of the frost layer is predominately dependent of water vapor transport. A surface that can selectively attract and repel water vapor has the potential to change the frost growth pattern and to limit the thickness of the frost layer. The objective of this work is to investigate various patterns of water-attracting and water-repelling regions on surfaces and on fin structures and to discover the widest temperature range possible were frost can be completely prevented as well as determine how frost formation can be optimally controlled for significantly less energy consumption in applications in which the conditions are beyond frost prevention. This project will fundamentally investigate new mixed hydrophilic and hydrophobic surfaces that generate and coalesce supercooled water droplets, that is, water droplets that remain in the liquid phase at and below freezing temperature. The interlaced coatings pragmatically relocate these droplets on the heat transfer surfaces. These new concepts mitigate frost growth, control frost loading, and maximizes energy conversion efficiencies. The investigation will be approached collaboratively: Kansas State University will develop the surfaces and study the droplets in quiescence conditions while Auburn University will characterize the resilience of the anti-frost properties of the new surfaces under convective dynamic conditions on fin structures. The objective of this research is to advance the understanding of how these coatings affect the frost nucleation and structure during growth. A major innovation from the proposed research will be a robust surface that provides significantly reduced frost layer, which will greatly minimize thermal resistance and air flow blockage. This will immediately augment the energy conversion efficiencies of refrigeration systems and air-cooled condensers. The experimental results from this work will be also used to strengthen the models developed by the research team for designing frost mitigating surfaces.
#1604183Betz, Amy R.Frost 形成是一种常见现象,会影响能源消耗;它在冰箱中积聚,覆盖车窗,并阻止热泵空调正常运行。它还对飞机安全性和可靠性等应用产生有害影响。这项研究将研究结合吸水区域和防水区域的新表面,以防止和控制霜的形成。在结霜过程中,水以气相、液相和固相共存。通过使用具有弹性且最佳定位的吸水和斥水区域交错图案的表面,可以在水结冰之前控制水的输送。初步结果表明,控制水在液相和气相中的传输可以显着增加结冰所需的时间,甚至在某些温度范围内完全防止结霜。即使水最初在表面结冰后,霜也会继续在三维方向上生长,从而导致厚厚的霜堆积。霜层的生长主要取决于水蒸气的输送。 能够选择性地吸引和排斥水蒸气的表面有可能改变霜的生长模式并限制霜层的厚度。这项工作的目的是研究表面和翅片结构上吸水和斥水区域的各种模式,并发现可以完全防止霜冻的最宽温度范围,并确定如何最佳地控制霜的形成,以在超出防霜条件的应用中显着减少能耗。该项目将从根本上研究新的混合亲水性和疏水性表面,这些表面产生并聚结过冷水滴,即在冰点及以下温度下保持液态的水滴。交错的涂层实用地将这些液滴重新定位在传热表面上。这些新概念减轻了霜的生长,控制了霜负荷,并最大限度地提高了能量转换效率。这项研究将通过合作进行:堪萨斯州立大学将开发表面并研究静态条件下的液滴,而奥本大学将表征新表面在对流动态条件下翅片结构的防霜性能的弹性。这项研究的目的是加深对这些涂层如何影响生长过程中霜核和结构的理解。拟议研究的一项重大创新是坚固的表面,可显着减少霜层,从而大大减少热阻和气流阻塞。这将立即提高制冷系统和风冷冷凝器的能量转换效率。这项工作的实验结果还将用于加强研究团队开发的用于设计减霜表面的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Betz其他文献
Amy Betz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Betz', 18)}}的其他基金
The 15th International Conference on Nanochannels, Microchannels and Minichannels; August 27-31, 2017 in Cambridge, MA
第十五届纳米通道、微通道和迷你通道国际会议;
- 批准号:
1743000 - 财政年份:2017
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
Research Initiation: The Formation of Engineering Students' Beliefs about Intelligence
研究启动:工科学生智能信念的形成
- 批准号:
1738209 - 财政年份:2017
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
EAGER: Control and mitigation of frost formation using mixed hydrophilic and hydrophobic surfaces
EAGER:使用混合亲水和疏水表面控制和减轻结霜
- 批准号:
1448270 - 财政年份:2014
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 21.12万 - 项目类别:
Continuing Grant














{{item.name}}会员




