Collaborative Research: Next-Generation Simultaneously Ion- and Electron-Conducting Block Copolymer Binders for Battery Electrodes
合作研究:用于电池电极的下一代同时传导离子和电子的嵌段共聚物粘合剂
基本信息
- 批准号:1604682
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. Lithium-ion batteries are comprised of a variety of materials for storing and releasing ions, transporting electrical charge, and maintaining mechanical integrity. Binder materials, although representing less than 10% of the battery by weight, are an important component for maintaining adhesion between the different materials. This collaborative project will develop a new class of binding materials based on polymers that are both conductive and electrochemically active, enhancing both mechanical and electrochemical properties. The scientific research will establish the principles for the design of electroactive polymeric binders for lithium ion batteries. The key innovation is that the polymer material will be designed at the molecular level to enable these electroactive properties. When properly designed at the molecular level, these polymers have potential to improve the stability and performance of a wide range of battery electrodes. The educational activities associated with this project will provide opportunities for community college students to work on the development of conjugated polymers for energy storage. Furthermore, outreach activities to K-12 students from diverse and underrepresented groups are planned through Chemistry Open House, Empowering Leadership Alliance, Schlumberger Energy Institute, and the Sally Ride Festival.In lithium ion battery systems, polymeric binders provide adhesion with various electrode components and stabilize contact with the current collector. However, current binders are electronically inactive. Substantial improvements in electrode performance and capacity may be possible through the molecular design of electroactive polymeric binders. Towards this end, polymeric binders that are ion-conducting, electron-conducting, and redox-active as well as mechanically stable, are needed. The goal of this research is to develop and understand the functionality of the polymer materials needed to enable these properties. The research plan will consider polymers that contain electronically conductive backbones, side chains for self-doping and ionic conductivity, and redox-active carbonyl groups. The research plan has three objectives. The first objective is to synthesize co-polymers that conduct both ions and electrons simultaneously, and characterize their resulting structural, physiochemical, and electrochemical properties. The second objective is to characterize the electrochemical/mechanical properties of hybrid anodes containing a silicon base material and polymer binders developed under the first objective. The third objective is to incorporate redox-active groups into the polymer backbone and examine their role on conductive polymer binder properties. Through this approach, this work seeks to establish the fundamental properties that influence conductivity, mechanical integrity, and electrochemical activity of the polymeric materials to suggest design rules for electroactive binders that are compatible with a broad range of electrode materials.
可充电锂离子电池通过存储风能和太阳能等间歇性可再生资源产生的电力,或为零排放电动汽车提供动力,从而帮助实现可持续能源系统。 锂离子电池由各种材料组成,用于存储和释放离子,传输电荷,并保持机械完整性。 粘合剂材料虽然占电池重量的不到10%,但却是保持不同材料之间粘合的重要组分。 该合作项目将开发一种基于导电和电化学活性聚合物的新型粘合材料,增强机械和电化学性能。这项科学研究将为锂离子电池电活性聚合物粘合剂的设计奠定基础。 关键的创新在于,聚合物材料将在分子水平上进行设计,以实现这些电活性特性。 当在分子水平上进行适当设计时,这些聚合物有潜力提高各种电池电极的稳定性和性能。 与该项目相关的教育活动将为社区大学的学生提供机会,致力于开发用于储能的共轭聚合物。 此外,还计划通过化学开放日、赋权领导联盟、斯伦贝谢能源研究所和萨利莱德节,为来自不同和代表性不足群体的K-12学生开展外联活动。在锂离子电池系统中,聚合物粘合剂提供与各种电极组件的粘合,并稳定与集电器的接触。 然而,目前的粘合剂是电子惰性的。通过电活性聚合物粘合剂的分子设计,电极性能和容量的实质性改进是可能的。 为此,需要离子传导、电子传导和氧化还原活性以及机械稳定的聚合物粘合剂。这项研究的目标是开发和理解实现这些特性所需的聚合物材料的功能。该研究计划将考虑含有电子导电主链、用于自掺杂和离子导电性的侧链以及氧化还原活性羰基的聚合物。 研究计划有三个目标。 第一个目标是合成同时传导离子和电子的共聚物,并表征其结构、物理化学和电化学性质。第二个目标是表征在第一个目标下开发的含有硅基材料和聚合物粘合剂的混合阳极的电化学/机械性能。 第三个目标是将氧化还原活性基团纳入聚合物主链,并检查它们对导电聚合物粘合剂性能的作用。 通过这种方法,这项工作旨在建立影响导电性,机械完整性和电化学活性的聚合物材料的基本属性,建议与广泛的电极材料兼容的电活性粘合剂的设计规则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jodie Lutkenhaus其他文献
Jodie Lutkenhaus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jodie Lutkenhaus', 18)}}的其他基金
GOALI: Manufacturing of Two-Dimensional MXene Nanosheets by Salt Solution Etching and Their Solution-based Layer-by-Layer Assembly into Heterostructures
GOALI:通过盐溶液蚀刻制造二维 MXene 纳米片及其基于溶液的逐层组装成异质结构
- 批准号:
2240554 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Accelerated Design of Redox-Active Polymers for Metal-Free Batteries
合作研究:DMREF:无金属电池氧化还原活性聚合物的加速设计
- 批准号:
2119672 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Water-driven Glass Transition Dynamics in Polyelectrolyte Complexes and Multilayers
聚电解质复合物和多层膜中水驱动的玻璃化转变动力学
- 批准号:
1905732 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Tailoring the Composition, Morphology and Assembly of MXene Nanosheets
定制 MXene 纳米片的组成、形态和组装
- 批准号:
1760859 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Soft Energy and Power
规划资助:软能源与电力工程研究中心
- 批准号:
1840453 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Water, Salt, and Temperature Effects in Polyelectrolyte Complexes and Multilayers
水、盐和温度对聚电解质复合物和多层膜的影响
- 批准号:
1609696 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MWN: Thermal Transitions in Polyelectrolyte Multilayers and Complexes
MWN:聚电解质多层和复合物中的热转变
- 批准号:
1312676 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Hybrid Block Copolymer Electrodes for Electrochemical Energy Storage
合作研究:用于电化学储能的混合嵌段共聚物电极
- 批准号:
1336716 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Internal Structure and Properties of Confined Layer-by-Layer Films and Nanotubes
职业:受限层状薄膜和纳米管的内部结构和性能
- 批准号:
1049706 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
NSF Support For Travel Expenses For Participants in ACS Symposium "Polyelectrolyte Complexes and Multilayers" To Be Held In Denver, CO August 28-31, 2011
NSF 支持 ACS 研讨会“聚电解质复合物和多层膜”与会者的差旅费用,该研讨会将于 2011 年 8 月 28 日至 31 日在科罗拉多州丹佛市举行
- 批准号:
1132349 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
- 批准号:
2308306 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant