Accelerating Multimetallic Catalyst Design for Electrochemical CO2 Reduction using Quantum Chemical Modeling and Machine Learning

使用量子化学建模和机器学习加速电化学二氧化碳还原的多金属催化剂设计

基本信息

项目摘要

1604984Xin, HongliangThe proposed work is a computational study aimed at identifying novel multimetallic nanomaterials for the efficient electrochemical conversion of carbon dioxide (CO2) to value-added chemicals and fuels. This has the dual benefit of reducing the emissions of the greenhouse gas CO2 and moving closer to a sustainable energy future based on a closed loop carbon cycle fueled by a combination of solar energy and electrochemical conversion processes. Prior research has demonstrated that copper (Cu) nanocubes exhibit remarkable selectivity towards carbon-carbon bond formation, but with electrical efficiency too low to be commercially viable. The study is based on the hypothesis that multimetallic nanocubes consisting of precisely mixed, low-cost metals can convert CO2 to useful chemicals and fuels at higher efficiency and selectivity than the Cu nanocubes alone. The researchers bring together expertise in density functional theory calculations and ab initio molecular dynamics - aided by advanced machine-learning algorithms - to predict materials combinations that lower the over-potential for electrochemical reduction of CO2 to ethylene and ethanol. The research is based on a three-step approach that first unravels the active site and reaction mechanism of CO2 reduction on Cu nanocubes, then creates predictive models linking nanoparticle composition and structure to the surface reactivity by machine-learning models, and lastly, develops an integrated framework for accelerating catalyst discovery. The broader impact of the work will be enhanced through educational outreach activities and open-source access to the tools developed during the course of the project.
1604984 Xin,Hongliang拟议的工作是一项计算研究,旨在识别新型多金属纳米材料,用于二氧化碳(CO2)的有效电化学转化为增值化学品和燃料。这具有减少温室气体CO2的排放和基于由太阳能和电化学转换过程的组合提供燃料的闭环碳循环的可持续能源未来的双重好处。先前的研究已经证明,铜(Cu)纳米立方体对碳-碳键形成表现出显着的选择性,但电效率太低而不能商业化。该研究基于这样的假设,即由精确混合的低成本金属组成的多金属纳米立方体可以比单独的Cu纳米立方体更高的效率和选择性将CO2转化为有用的化学品和燃料。研究人员将密度泛函理论计算和从头算分子动力学方面的专业知识结合在一起-在先进的机器学习算法的帮助下-预测材料组合,以降低CO2电化学还原为乙烯和乙醇的过电位。该研究基于三步方法,首先揭示Cu纳米立方体上CO2还原的活性位点和反应机制,然后通过机器学习模型创建将纳米颗粒组成和结构与表面反应性联系起来的预测模型,最后开发一个加速催化剂发现的综合框架。将通过教育外联活动和开放源代码获取项目期间开发的工具,加强这项工作的广泛影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongliang Xin其他文献

Characterization and tunneling conductance spectra of N,N′-bis (9H-fluoren-9-ylidene)benzene-1,4-diamine thin films on graphite
  • DOI:
    10.1016/j.matchemphys.2010.02.029
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hongliang Xin;Zhuomin Li;Tianxian He;Xinrui Miao;Wenli Deng
  • 通讯作者:
    Wenli Deng
Characterization and electric field dependence of N,N′‐bis(9H‐fluoren‐9‐ylidene)benzene‐1, 4‐diamine thin film/substrate interface
N,N-双(9H-芴-9-亚基)苯-1, 4-二胺薄膜/基底界面的表征和电场依赖性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongliang Xin;Zhuomin Li;Tianxian He;W. Deng
  • 通讯作者:
    W. Deng
Bridging the complexity gap in computational heterogeneous catalysis with machine learning
利用机器学习弥合计算多相催化中的复杂性差距
  • DOI:
    10.1038/s41929-023-00911-w
  • 发表时间:
    2023-02-23
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Tianyou Mou;Hemanth Somarajan Pillai;Siwen Wang;Mingyu Wan;Xue Han;Neil M. Schweitzer;Fanglin Che;Hongliang Xin
  • 通讯作者:
    Hongliang Xin
National Institutes of Health Consensus Development Conference Statement: the treatment of sleep disorders of older people March 26-28, 1990.
美国国立卫生研究院共识发展会议声明:老年人睡眠障碍的治疗,1990 年 3 月 26-28 日。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hongliang Xin;Qianqing Li;Xiaoyan Wu;B. Yin;Jin Li;Jianbo Zhu
  • 通讯作者:
    Jianbo Zhu
Ophthalmic Delivery of Brinzolamide by Liquid Crystalline Nanoparticles: In Vitro and In Vivo Evaluation
液晶纳米颗粒布林佐胺的眼科给药:体外和体内评价
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Weijun Wu;Jing Li;Lin Wu;Baoyan Wang;Zhongyuan Wang;Qunwei Xu;Hongliang Xin
  • 通讯作者:
    Hongliang Xin

Hongliang Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongliang Xin', 18)}}的其他基金

Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
  • 批准号:
    2409631
  • 财政年份:
    2024
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245402
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Standard Grant
CAREER: Bayesian Model of Chemisorption for Adsorbate-Specific Tuning of Electrocatalysis
职业:用于电催化吸附质特异性调节的化学吸附贝叶斯模型
  • 批准号:
    1845531
  • 财政年份:
    2019
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Standard Grant

相似海外基金

Multimetallic CO2 Reduction Catalysts as Artificial Cofactors
作为人工辅助因子的多金属二氧化碳还原催化剂
  • 批准号:
    EP/Y002695/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Research Grant
EAGER: Understanding Photocatalytic Reduction-Enabled Continuous Nucleation of Multimetallic Nanoparticles
EAGER:了解多金属纳米粒子的光催化还原连续成核
  • 批准号:
    2325247
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Standard Grant
CAREER: CAS: Chemical Pathways for the Synthesis of Dilute Metal Alloy and Multimetallic Complex Solid Solution Nanocrystals
职业:CAS:稀金属合金和多金属络合物固溶体纳米晶体合成的化学途径
  • 批准号:
    2239441
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Continuing Grant
N2 functionalization with hydrocarbons by multimetallic hydride complexes
通过多金属氢化物络合物与碳氢化合物进行 N2 官能化
  • 批准号:
    23H01981
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nanocrystal Conversion Pathways for the Synthesis of Multimetallic Nanostructures
用于合成多金属纳米结构的纳米晶体转化途径
  • 批准号:
    2203349
  • 财政年份:
    2022
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Standard Grant
CAREER: Single Particle Visualization of Chemical Processes During Multimetallic Nanocrystal Synthesis
职业:多金属纳米晶体合成过程中化学过程的单粒子可视化
  • 批准号:
    2045258
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Continuing Grant
Multimetallic Catalysis in Biology and Synthesis
生物学和合成中的多金属催化
  • 批准号:
    10402390
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
Multimetallic Catalysis in Biology and Synthesis
生物学和合成中的多金属催化
  • 批准号:
    10624252
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
Method Development for the Synthesis of Colloidal Multimetallic Nanocrystals
胶体多金属纳米晶体的合成方法开发
  • 批准号:
    460932591
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
    Research Grants
Multimetallic Catalysis in Biology and Synthesis
生物学和合成中的多金属催化
  • 批准号:
    10166488
  • 财政年份:
    2021
  • 资助金额:
    $ 38.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了