CAREER: Bayesian Model of Chemisorption for Adsorbate-Specific Tuning of Electrocatalysis

职业:用于电催化吸附质特异性调节的化学吸附贝叶斯模型

基本信息

项目摘要

Ammonia (NH3) is best known as a starting material for fertilizers, but its reaction with oxygen (called oxidation) is required in applications such as ammonia sensing, wastewater treatment, and direct ammonia fuel cells - all of which are carried out electrochemically, and usually assisted by a catalyst material called an electrocatalyst. Even with state-of-the-art platinum-based electrocatalysts, the oxidation reaction is inefficient and requires excess electrical energy. The project will investigate, through theoretical and computational means, the possibility of improving both the energy efficiency and the rate of electrochemical ammonia oxidation by combining platinum with other metals in nano-scale particles known as nano-alloys. The predicted nano-alloy compositions will help guide the design of more efficient electrocatalysts, not only for ammonia-related applications, but also for a broad range of energy and environmental technologies. The project also integrates research with educational and outreach initiatives designed to excite high-school students about STEM opportunities and train undergraduate and graduate students in the application of computer models for energy security and environmental stewardship.Electrocatalytic reactions at the core of artificial photosynthesis involve multiple proton-coupled electron transfer steps. Arguably, for a given type of catalysts, e.g., d-block metals, the scaling relations among adsorption energies of atoms and their hydrogenated species limit the efficiency of electrical/chemical energy conversion. To overcome those obstacles for the ammonia oxidation reaction, the project will utilize a Bayesian framework for advancing the orbital-level understanding of adsorbate-surface interactions and catalytic processes at the metal-electrolyte interfaces, paving the path toward adsorbate-specific tuning of electrocatalysis. The free formation energies of key reaction species will be selectively tuned via orbital-wise perturbation of chemical bonding, e.g., nano-alloying, such that the activation barrier of the rate-limiting N-N bond formation or N-H cleavage step is reduced without poisoning the surface with adsorbed N adatoms. Catalysis theory, quantum chemistry, and machine learning will be combined to unravel atomistic mechanisms of sluggish NH3 electro-oxidation kinetics and develop the Bayesian model of chemisorption with machine-learned Hamiltonians. Modulation of adsorbed species by engineering their interactions with atomically-tailored metal sites guided by the Bayesian models will further advance the theory of chemisorption and its applications in catalysis, enabling design of catalytic systems with physically interpretable insights rather than trial-and-error searches. The educational component of this CAREER plan aims to further develop the informatics for photon harvesting at nano-engineered structures, via a mobile device application, iPhanes, developed by the investigator. This effort will energize student learning using materials informatics on mobile devices, demonstrate a multidisciplinary perspective of energy issues, and stimulate the students' collaborative learning via materials design projects. This "experiment" will enhance recruitment and retention of women, minorities, and persons with disabilities in STEM fields, and will motivate the students towards lifelong learning and careers related to advanced renewable energy and environmental technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氨(NH3)是最著名的肥料原料,但它与氧的反应(称为氧化)在氨传感、废水处理和直接氨燃料电池等应用中是必需的——所有这些都是通过电化学进行的,通常由一种叫做电催化剂的催化剂材料辅助。即使使用最先进的铂基电催化剂,氧化反应也是低效的,而且需要多余的电能。该项目将通过理论和计算手段,通过将铂与其他金属结合在纳米级颗粒(即纳米合金)中,来研究提高能源效率和电化学氨氧化速率的可能性。预测的纳米合金成分将有助于指导设计更高效的电催化剂,不仅适用于氨相关应用,而且适用于广泛的能源和环境技术。该项目还将研究与教育和推广活动相结合,旨在激发高中生对STEM机会的兴趣,并培训本科生和研究生将计算机模型应用于能源安全和环境管理。人工光合作用的核心电催化反应涉及多个质子耦合电子转移步骤。可以说,对于特定类型的催化剂,例如d-嵌段金属,原子及其氢化物质的吸附能之间的标度关系限制了电能/化学能转换的效率。为了克服氨氧化反应的这些障碍,该项目将利用贝叶斯框架来推进对吸附物表面相互作用和金属-电解质界面催化过程的轨道级理解,为吸附物特异性电催化调节铺平道路。关键反应物质的自由生成能将通过化学键的轨道扰动选择性地调整,例如,纳米合金化,从而降低限速N-N键形成或N- h裂解步骤的激活势垒,而不会用吸附的N原子毒害表面。催化理论、量子化学和机器学习将结合起来,揭示缓慢NH3电氧化动力学的原子机制,并利用机器学习的哈密顿量建立化学吸附的贝叶斯模型。在贝叶斯模型的指导下,通过设计吸附物质与原子定制金属位点的相互作用来调节吸附物质,将进一步推进化学吸附理论及其在催化中的应用,使设计具有物理可解释见解的催化系统成为可能,而不是反复试验。该职业计划的教育部分旨在通过研究者开发的移动设备应用程序iphone,进一步发展纳米工程结构中光子收集的信息学。这一努力将激发学生在移动设备上使用材料信息学的学习,展示能源问题的多学科视角,并通过材料设计项目激发学生的协作学习。这项“实验”将加强STEM领域对女性、少数族裔和残疾人的招聘和保留,并将激励学生终身学习和从事与先进可再生能源和环境技术相关的职业。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning of lateral adsorbate interactions in surface reaction kinetics
表面反应动力学中横向吸附质相互作用的机器学习
  • DOI:
    10.1016/j.coche.2022.100825
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Mou, Tianyou;Han, Xue;Zhu, Huiyuan;Xin, Hongliang
  • 通讯作者:
    Xin, Hongliang
Interpretable Machine Learning for Catalytic Materials Design toward Sustainability
  • DOI:
    10.1021/accountsmr.3c00131
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Hongliang Xin;Tianyou Mou;H. Pillai;Shih-Han Wang;Yang Huang
  • 通讯作者:
    Hongliang Xin;Tianyou Mou;H. Pillai;Shih-Han Wang;Yang Huang
Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation
  • DOI:
    10.1021/acscatal.9b04670
  • 发表时间:
    2020-04-03
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Li, Yi;Li, Xing;Wu, Gang
  • 通讯作者:
    Wu, Gang
Catalyst design with machine learning
  • DOI:
    10.1038/s41560-022-01112-8
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    56.7
  • 作者:
    Hongliang Xin
  • 通讯作者:
    Hongliang Xin
Identification of Active Sites for Ammonia Electrosynthesis on Ruthenium
  • DOI:
    10.1021/acsenergylett.2c02175
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Lin Hu;H. Pillai;Corbin Feit;Kaige Shi;Zhengning Gao;P. Banerjee;Hongliang Xin;Xiaofeng Feng
  • 通讯作者:
    Lin Hu;H. Pillai;Corbin Feit;Kaige Shi;Zhengning Gao;P. Banerjee;Hongliang Xin;Xiaofeng Feng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongliang Xin其他文献

Characterization and tunneling conductance spectra of N,N′-bis (9H-fluoren-9-ylidene)benzene-1,4-diamine thin films on graphite
  • DOI:
    10.1016/j.matchemphys.2010.02.029
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hongliang Xin;Zhuomin Li;Tianxian He;Xinrui Miao;Wenli Deng
  • 通讯作者:
    Wenli Deng
Characterization and electric field dependence of N,N′‐bis(9H‐fluoren‐9‐ylidene)benzene‐1, 4‐diamine thin film/substrate interface
N,N-双(9H-芴-9-亚基)苯-1, 4-二胺薄膜/基底界面的表征和电场依赖性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongliang Xin;Zhuomin Li;Tianxian He;W. Deng
  • 通讯作者:
    W. Deng
Bridging the complexity gap in computational heterogeneous catalysis with machine learning
利用机器学习弥合计算多相催化中的复杂性差距
  • DOI:
    10.1038/s41929-023-00911-w
  • 发表时间:
    2023-02-23
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Tianyou Mou;Hemanth Somarajan Pillai;Siwen Wang;Mingyu Wan;Xue Han;Neil M. Schweitzer;Fanglin Che;Hongliang Xin
  • 通讯作者:
    Hongliang Xin
National Institutes of Health Consensus Development Conference Statement: the treatment of sleep disorders of older people March 26-28, 1990.
美国国立卫生研究院共识发展会议声明:老年人睡眠障碍的治疗,1990 年 3 月 26-28 日。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hongliang Xin;Qianqing Li;Xiaoyan Wu;B. Yin;Jin Li;Jianbo Zhu
  • 通讯作者:
    Jianbo Zhu
Ophthalmic Delivery of Brinzolamide by Liquid Crystalline Nanoparticles: In Vitro and In Vivo Evaluation
液晶纳米颗粒布林佐胺的眼科给药:体外和体内评价
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Weijun Wu;Jing Li;Lin Wu;Baoyan Wang;Zhongyuan Wang;Qunwei Xu;Hongliang Xin
  • 通讯作者:
    Hongliang Xin

Hongliang Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongliang Xin', 18)}}的其他基金

Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
  • 批准号:
    2409631
  • 财政年份:
    2024
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245402
  • 财政年份:
    2023
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Accelerating Multimetallic Catalyst Design for Electrochemical CO2 Reduction using Quantum Chemical Modeling and Machine Learning
使用量子化学建模和机器学习加速电化学二氧化碳还原的多金属催化剂设计
  • 批准号:
    1604984
  • 财政年份:
    2016
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Bayesian Learning with Model Misspecification
模型错误指定的贝叶斯学习
  • 批准号:
    23K20143
  • 财政年份:
    2024
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Continuing Grant
Bayesian causal estimation via model misspecification
通过模型错误指定进行贝叶斯因果估计
  • 批准号:
    EP/Y029755/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Research Grant
New Directions in Bayesian Model Criticism
贝叶斯模型批评的新方向
  • 批准号:
    2311108
  • 财政年份:
    2023
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Standard Grant
Testing a Bayesian model of auditory verbal hallucinations in the adolescent brain
测试青少年大脑中幻听的贝叶斯模型
  • 批准号:
    2775240
  • 财政年份:
    2022
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Studentship
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
  • 批准号:
    10700801
  • 财政年份:
    2022
  • 资助金额:
    $ 54.95万
  • 项目类别:
Bayesian Methods, Computation, Model Selection and Goodness of Fit with Complex Data
复杂数据的贝叶斯方法、计算、模型选择和拟合优度
  • 批准号:
    RGPIN-2018-05008
  • 财政年份:
    2022
  • 资助金额:
    $ 54.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了