Development of spirally coiling, force-sensing soft-robot for safe and accurate cochlear electrode implantation
开发螺旋卷绕、力感应软机器人,实现安全、准确的耳蜗电极植入
基本信息
- 批准号:1605275
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cochlear implant (CI) is fast becoming the main rehabilitation aid for those who suffer from hair cell-related hearing impairments. The nation's current demography suggests that the CI adoption will increase at an accelerated pace for the foreseeable future, calling for more innovations in the CI technology. Of particular urgency is the need for safe and accurate schemes for CI electrode array insertion which is very challenging due to its stringent requirements on insertion depth, electrode-to-wall proximity, and tissue safety. The 3D-spiraling human cochlear anatomy further complicates the task. Many shape-controllable electrodes have been devised to meet the requirements but they still suffer from issues related to limited shape control, slow operation, and potential hazards of electrical actuation. This project focuses on achieving safe and accurate CI electrode insertion through joint utilization of pneumatic soft-robotic micro-tentacles and optical force sensors monolithically integrated with them. Both of them are made of soft elastomers, which greatly facilitates non-intrusive, safe insertion of the CI electrode. The high-level maneuverability of the bio-inspired micro-tentacle will also widen the scope of achievable motion and improve accuracy of the insertion process. Above all, the fusion of agile shape control and integrated sensing will eventually lead to "adaptive insertion" which has been incessantly pursued in CI. All of these will be achieved via the collaboration of two researchers with very different specialty areas, electrical engineering and structural engineering, which will contribute to the convergence in science and technology. This project also aims to strengthen cross-disciplinary training in academia through co-advising of graduate and undergraduate students in seemingly unrelated, yet highly synergistic topics such as optics, MEMS, structural engineering, and computational mechanics. It includes outreach plans to the underrepresented in based on K12 science and technology demonstrations and extra-curricular activities. This project's ultimate goal of safe and accurate insertion of CI electrode arrays through soft-robotic, sensor-integrated micro-tentacle. Accordingly, the following objectives have been lined up: (1) Development of soft-robotic tentacle capable of performing 3-dimensionally spiraling motion. This task will be carried out as a parallel effort encompassing the microfabrication and testing work by the PI and the computational design, optimization, and analysis by the co-PI. (2) Development of elastomer-based optical force sensors. The key issues of the task include the accomplishment of totally non-intrusive sensing for tissue safety and monolithic, clinically safe integration with the soft-robotic main body. (3) Development of the schemes to fix the shape of the soft-robot upon completion of the insertion process. The key issue is again achieving the goal in a clinically safe fashion. The impact of this unique collaboration will go beyond CI eventually. The importance of micro-robots and soft-robots in rehabilitation and assistive technologies has been in continuous increase in recent years. This project will expedite their fusion and add momentum to the fledgling field of "microscale soft-robotics." The plan to monolithically integrate the shape-control and force-sensing function blocks with the soft-actuator will also contribute to the field of human-friendly robotics which is attracting intense research interests from the robotics community. The resulting additive fabrication and shape-control techniques will enrich the arsenal of additive manufacturing and microscale medical robotics, respectively.
耳蜗植入物(CI)正迅速成为毛细胞相关听力障碍患者的主要康复辅助工具。该国目前的人口统计表明,CI采用将在可预见的未来加速增长,需要更多的CI技术创新。特别紧迫的是需要用于CI电极阵列插入的安全和准确的方案,由于其对插入深度、电极到壁的接近度和组织安全性的严格要求,这是非常具有挑战性的。3D螺旋形的人类耳蜗解剖结构进一步使任务复杂化。已经设计了许多形状可控的电极以满足要求,但是它们仍然遭受与有限的形状控制、缓慢的操作和电致动的潜在危险相关的问题。该项目的重点是实现安全和准确的CI电极插入通过气动软机器人微触角和光学力传感器与它们单片集成的联合利用。两者均由柔软的弹性体制成,这极大地促进了CI电极的非侵入性、安全插入。仿生微肌腱的高水平可操作性也将扩大可实现的运动范围,并提高插入过程的准确性。最重要的是,敏捷形状控制和集成传感的融合将最终导致“自适应插入”,这一直是CI不断追求的。所有这些都将通过两名专业领域非常不同的研究人员的合作来实现,电气工程和结构工程,这将有助于科学和技术的融合。该项目还旨在通过研究生和本科生在看似无关但高度协同的主题(如光学,MEMS,结构工程和计算力学)中的共同建议,加强学术界的跨学科培训。它包括在K12科学和技术示范和课外活动的基础上,向代表性不足的人提供宣传计划。 该项目的最终目标是通过软机器人、传感器集成的微探针安全准确地插入CI电极阵列。因此,以下目标已经排成一行:(1)能够执行三维螺旋运动的软机器人触手的发展。这项任务将作为一个平行的努力,包括微加工和测试工作的PI和计算设计,优化和分析的合作PI。(2)基于光纤的光学力传感器的研制。该任务的关键问题包括实现组织安全的完全非侵入式传感,以及与软机器人主体的单片临床安全集成。(3)开发在完成插入过程后固定软机器人形状的方案。关键问题是再次以临床安全的方式实现目标。这种独特合作的影响最终将超越CI。近年来,微型机器人和软机器人在康复和辅助技术中的重要性不断增加。该项目将加速它们的融合,并为新兴的“微型软机器人”领域增添动力。“将形状控制和力传感功能块与软致动器单片集成的计划也将有助于人类友好型机器人领域,这吸引了机器人界的强烈研究兴趣。由此产生的增材制造和形状控制技术将分别丰富增材制造和微型医疗机器人的武器库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaeyoun Kim其他文献
Towards Full-Scale Integration and Beyond
- DOI:
10.1007/978-3-319-50286-1_6 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jaeyoun Kim - 通讯作者:
Jaeyoun Kim
Broadband, high-brightness 10-Gbit/s supercontinuum source for A/D conversion
用于 A/D 转换的宽带、高亮度 10 Gbit/s 超连续谱源
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
O. Boyraz;Jaeyoun Kim;M. Islam;F. Coppinger;B. Jalali - 通讯作者:
B. Jalali
Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices
用于玻璃波导器件的低损耗氢化非晶硅覆盖DBR的设计和制造
- DOI:
10.1117/12.502291 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jaeyoun Kim;K. Winick;C. Florea;M. Mccoy - 通讯作者:
M. Mccoy
Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture
亚波长孔径金纳米袋中量子点的荧光增强
- DOI:
10.1063/1.2388870 - 发表时间:
2006 - 期刊:
- 影响因子:4
- 作者:
G. Liu;Jaeyoun Kim;Yu Lu;Luke P. Lee - 通讯作者:
Luke P. Lee
Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing
基于波导的表面等离子体共振生物传感的有限厚度金属-绝缘体-金属结构的数值研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yifen Liu;Jaeyoun Kim - 通讯作者:
Jaeyoun Kim
Jaeyoun Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaeyoun Kim', 18)}}的其他基金
Single-Step, Rapidly Reconfigurable Grayscale Nanoprinting by Light-Controlled Nanocapillary Effect
通过光控纳米毛细管效应进行单步、快速可重构灰度纳米打印
- 批准号:
2129796 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
EAGER: Bio-inspired Thin and Flat Solar Concentrator
EAGER:仿生薄型扁平太阳能聚光器
- 批准号:
1147413 - 财政年份:2012
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
CAREER: Bio-inspired MEMS imaging platform with ultrawide, dynamically tunable field-of-view for biomedical and assistive applications
职业:仿生 MEMS 成像平台,具有超宽、动态可调视野,适用于生物医学和辅助应用
- 批准号:
0954845 - 财政年份:2010
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
相似海外基金
Development of Unified Physical Model for Flow Boiling inside an Internally, Spirally, Grooved Tube, which is Applicable for Fluids with Much Different Thermophysical Properties
建立内螺旋沟槽管内流动沸腾的统一物理模型,适用于具有多种热物理性质的流体
- 批准号:
23560237 - 财政年份:2011
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the Bond Characteristic of Fiber Reinforced Plastic Rod with Spirally Indented String
螺旋压痕线纤维增强塑料杆粘结特性研究
- 批准号:
08650667 - 财政年份:1996
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Ultimate Shear Strength and Shear Design Equation for the Spirally Reinforced Concrete Columns
螺旋钢筋混凝土柱极限抗剪强度及抗剪设计方程研究
- 批准号:
61550400 - 财政年份:1986
- 资助金额:
$ 30.03万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




