Plasmon-Enhanced Catalytic Ozonation for Water Treatment and Reuse
用于水处理和再利用的等离激元增强催化臭氧化
基本信息
- 批准号:1606117
- 负责人:
- 金额:$ 32.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1606117WuThe stress of rapid population growth, shortage of fresh water sources, a changing climate, and impaired water sources due to industrialization and urbanization presents a major challenge to water treatment technologies. To better insure high quality drinking water, new, innovative, and cost effective processes are needed. This project is potentially a transformative step to enhance catalytic ozonation for the destruction of emerging contaminants of concern. Advanced oxidation processes usually involve generation of hydroxyl radicals and can be used to remove recalcitrant organic contaminants in water and wastewater. However, the current advanced oxidation processes are usually energy intensive and may form undesired byproducts. This project will examine an enhanced advanced oxidation process as an alternative solution. This project seeks to investigate an innovative advanced water treatment process involving plasmon-enhanced catalytic ozonation to circumvent the limitations of current advanced oxidation processes which fall short of high energy efficiency and low by-product formation. When the frequency of photons (i.e. wavelength of the irradiating light) matches the natural frequency of surface electrons, localized surface plasmon resonance occurs, resulting in strong oscillations of the surface electrons against the positive nuclei background. Plasmonic metals (e.g. Ag, Au, and Cu) support surface plasmon polariton where electromagnetic waves couple to the collective oscillations of valance electrons. It improves solar energy conversion efficiency by enhancing the light absorption in the semiconductor (e.g. TiO2) and directly transferring the plasmonic energy from the metal to the metal oxide support to induce the charge separation. The proposed multidisciplinary research represents one of the first attempts to systematically investigate and utilize the plasmonic effect in advanced water/wastewater treatment. The underlying hypothesis is that the catalytic ozonation of recalcitrant organic compounds can be achieved at a much higher efficiency with minimum by-products formation by using plasmonic effects of copper-based catalysts (earth abundant metal) on metal oxide supports. Irradiating plasmonic nanoparticles with targeted geometric and plasmonic properties with light at their plasmon frequency will facilitate the generation of radical species via ozone decomposition and lead to more complete oxidation of organic contaminants (low organic byproducts formation). The results of the proposed work will provide insights into the novel treatment technology, data for process performance, guidelines for catalyst design and synthesis, and information of fate and transformation of representative emerging contaminants through advanced treatment processes. With LEDs (light emitting diodes) as the light source, this innovative process can be easily implemented in water treatment especially where ozone is used for disinfection. It can also be used in advanced treatment of wastewater for direct/indirect potable reuse. The overarching hypothesis is, that the catalytic ozonation of recalcitrant organic compounds can be achieved at a much higher efficiency with minimum byproducts formation by using plasmonic effects of copper-based catalysts (earth abundant metal) on metal oxide supports. To test this hypothesis the PIs will: (1) Design and synthesize Cu-based catalysts with targeted geometric structure and plasmonic properties using colloidal chemical synthesis as well as atomic layer deposition; (2) Test the catalysts in laboratory plasmon-enhanced catalytic ozonation process focusing on the degree of mineralization, inhibition of bromate formation, and catalyst reusability and stability; (3) Identify the active sites of the catalysts investigate the reaction mechanisms; and, (4) Apply plasmon-enhanced catalytic ozonation in various water matrices including surface water, secondary effluent and reverse osmosis (RO) concentrate produced during water reuse. The PIs have also developed a detailed and comprehensive educational plan that involves graduate and undergraduate students, and high school students working in their laboratories.
1606117 Wu人口快速增长、淡水资源短缺、气候变化以及工业化和城市化导致的水源受损等压力对水处理技术提出了重大挑战。为了更好地确保高质量的饮用水,需要新的,创新的和具有成本效益的工艺。该项目可能是一个变革性的步骤,以加强催化臭氧化,销毁新出现的令人关切的污染物。高级氧化过程通常涉及羟基自由基的产生,并且可用于去除水和废水中的难降解有机污染物。然而,目前的高级氧化工艺通常是能量密集型的,并且可能形成不期望的副产物。该项目将研究一种增强的高级氧化工艺作为替代解决方案。本项目旨在研究一种创新的先进水处理工艺,包括等离子体增强催化臭氧化,以规避目前先进氧化工艺的局限性,这些工艺缺乏高能源效率和低副产物形成。当光子的频率(即照射光的波长)与表面电子的自然频率匹配时,发生局部表面等离子体共振,导致表面电子相对于正核背景的强烈振荡。等离子体金属(例如Ag、Au和Cu)支持表面等离子体激元极化激元,其中电磁波耦合到价电子的集体振荡。它通过增强半导体(例如TiO 2)中的光吸收并将等离子体激元能量从金属直接转移到金属氧化物载体以诱导电荷分离来提高太阳能转换效率。拟议的多学科研究代表了系统研究和利用先进的水/废水处理等离子体效应的第一次尝试之一。潜在的假设是,通过使用金属氧化物载体上的铜基催化剂(地球丰富的金属)的等离子体效应,可以以高得多的效率实现柠檬酸盐有机化合物的催化臭氧化,同时形成最少的副产物。用等离子体频率的光照射具有目标几何和等离子体性质的等离子体纳米颗粒将促进通过臭氧分解产生自由基物质,并导致有机污染物的更完全氧化(低有机副产物形成)。拟议的工作的结果将提供深入了解新的处理技术,工艺性能的数据,催化剂设计和合成的指导方针,以及通过先进的处理工艺的代表性新兴污染物的命运和转化的信息。使用LED(发光二极管)作为光源,这一创新过程可以很容易地在水处理中实施,特别是在臭氧用于消毒的情况下。它还可用于废水的深度处理,以直接/间接饮用水再利用。首要的假设是,通过使用金属氧化物载体上的铜基催化剂(地球丰富的金属)的等离子体效应,可以以高得多的效率以最少的副产物形成实现柠檬酸盐有机化合物的催化臭氧化。为了验证这一假设,研究人员将:(1)采用胶体化学合成和原子层沉积法设计和合成具有目标几何结构和等离子体特性的铜基催化剂;(2)在实验室等离子体增强催化臭氧化过程中测试催化剂,重点是矿化程度、抑制溴酸盐形成、催化剂可重复使用性和稳定性;(3)确定催化剂的活性位点,研究反应机理;(4)将等离子体增强催化臭氧化应用于各种水基质,包括地表水、二级出水和水回用过程中产生的反渗透(RO)浓缩液。PI还制定了一个详细而全面的教育计划,涉及研究生和本科生,以及在实验室工作的高中生。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of Matrix Effects in Laboratory Studies of Catalytic Ozonation Processes
- DOI:10.1021/acs.iecr.8b05465
- 发表时间:2019-02
- 期刊:
- 影响因子:4.2
- 作者:Wenwen Yang;Tingting Wu
- 通讯作者:Wenwen Yang;Tingting Wu
Metallic ion leaching from heterogeneous catalysts: an overlooked effect in the study of catalytic ozonation processes
- DOI:10.1039/c7ew00273d
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Wenwen Yang;B. Vogler;Y. Lei;Tingting Wu
- 通讯作者:Wenwen Yang;B. Vogler;Y. Lei;Tingting Wu
Plasmon-enhanced Catalytic Ozonation for Efficient Removal of Recalcitrant Water Pollutants
等离激元增强催化臭氧化有效去除顽固水污染物
- DOI:10.1021/acsestengg.1c00020
- 发表时间:2021
- 期刊:
- 影响因子:7.1
- 作者:Yang, Wenwen;Bunian, Muntaseer;Chen, Xiankun;Heald, Steve;Yu, Lei;Wen, Jianguo;Lei, Yu;Wu, Tingting
- 通讯作者:Wu, Tingting
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tingting Wu其他文献
A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation
Fredholm积分微分方程二阶边值问题的多尺度伽辽金法
- DOI:
10.1016/j.cam.2015.06.020 - 发表时间:
2015-12 - 期刊:
- 影响因子:2.4
- 作者:
Yong Huang;Haiwu Rong;Tingting Wu;Taishan Zeng - 通讯作者:
Taishan Zeng
Fixed-point proximity algorithms solving an incomplete Fourier transform model for seismic wavefield modeling
定点邻近算法求解地震波场建模的不完全傅立叶变换模型
- DOI:
10.1016/j.cam.2020.113208 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Yuesheng Xu;Lixin Shen;Tingting Wu - 通讯作者:
Tingting Wu
Sequestration of V(V), Mo(VI) and W(VI) by fungal manganese oxides
真菌锰氧化物对 V(V)、Mo(VI) 和 W(VI) 的封存
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yukinori Tani;Tingting Wu;Hirotaka Naitou;Naoyuki Miyata - 通讯作者:
Naoyuki Miyata
Repeated-root constacyclic codes of length 6lmpn
长度为 6lmpn 的重根常循环码
- DOI:
10.3934/amc.2021044 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Tingting Wu;Shixin Zhu;Li Liu;Lanqiang Li - 通讯作者:
Lanqiang Li
A double-branch network framework for scanning coherent diffraction imaging
用于扫描相干衍射成像的双分支网络框架
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Tingting Wu;Xingqian Zhao;Junyao Ma - 通讯作者:
Junyao Ma
Tingting Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tingting Wu', 18)}}的其他基金
I-Corps: Novel Catalytic Ozonation Processes for Advanced Water and Wastewater Treatment
I-Corps:用于高级水和废水处理的新型催化臭氧化工艺
- 批准号:
2309263 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Standard Grant
相似海外基金
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
- 批准号:
24K17765 - 财政年份:2024
- 资助金额:
$ 32.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247709 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Continuing Grant
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247710 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Continuing Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
- 批准号:
2140971 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Standard Grant
Decentralised Ammonia production from Renewable Energy utilising novel sorption-enhanced plasma-catalytic Power-to-X technology
利用新型吸附增强等离子体催化 Power-to-X 技术从可再生能源中分散生产氨
- 批准号:
10055396 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
EU-Funded
Mechanism analysis of promotion of catalytic reaction in ionic liquid-modified electrodes by surface-enhanced infrared spectroscopy
表面增强红外光谱促进离子液体修饰电极催化反应的机理分析
- 批准号:
21K04664 - 财政年份:2021
- 资助金额:
$ 32.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Catalytic Resonance-Enhanced Activation of Hydrocarbon Resources
职业:催化共振增强碳氢化合物资源活化
- 批准号:
2045953 - 财政年份:2021
- 资助金额:
$ 32.97万 - 项目类别:
Continuing Grant
Development of a nano-catalytic in reservoir upgrading and enhanced recovery process for efficient extraction of conventional oil from extra-heavy oils and bitumen reservoirs
开发油藏升级和提高采收率工艺中的纳米催化技术,以从超稠油和沥青油藏中高效提取常规油
- 批准号:
499942-2016 - 财政年份:2019
- 资助金额:
$ 32.97万 - 项目类别:
Collaborative Research and Development Grants
Development of a nano-catalytic in reservoir upgrading and enhanced recovery process for efficient extraction of conventional oil from extra-heavy oils and bitumen reservoirs
开发油藏升级和提高采收率工艺中的纳米催化技术,以从超稠油和沥青油藏中高效提取常规油
- 批准号:
499942-2016 - 财政年份:2017
- 资助金额:
$ 32.97万 - 项目类别:
Collaborative Research and Development Grants
Development of a nano-catalytic in reservoir upgrading and enhanced recovery process for efficient extraction of conventional oil from extra-heavy oils and bitumen reservoirs
开发油藏升级和提高采收率工艺中的纳米催化技术,以从超稠油和沥青油藏中高效提取常规油
- 批准号:
499942-2016 - 财政年份:2016
- 资助金额:
$ 32.97万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




