Plasmon-Enhanced Catalytic Ozonation for Water Treatment and Reuse

用于水处理和再利用的等离激元增强催化臭氧化

基本信息

  • 批准号:
    1606117
  • 负责人:
  • 金额:
    $ 32.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

1606117WuThe stress of rapid population growth, shortage of fresh water sources, a changing climate, and impaired water sources due to industrialization and urbanization presents a major challenge to water treatment technologies. To better insure high quality drinking water, new, innovative, and cost effective processes are needed. This project is potentially a transformative step to enhance catalytic ozonation for the destruction of emerging contaminants of concern. Advanced oxidation processes usually involve generation of hydroxyl radicals and can be used to remove recalcitrant organic contaminants in water and wastewater. However, the current advanced oxidation processes are usually energy intensive and may form undesired byproducts. This project will examine an enhanced advanced oxidation process as an alternative solution. This project seeks to investigate an innovative advanced water treatment process involving plasmon-enhanced catalytic ozonation to circumvent the limitations of current advanced oxidation processes which fall short of high energy efficiency and low by-product formation. When the frequency of photons (i.e. wavelength of the irradiating light) matches the natural frequency of surface electrons, localized surface plasmon resonance occurs, resulting in strong oscillations of the surface electrons against the positive nuclei background. Plasmonic metals (e.g. Ag, Au, and Cu) support surface plasmon polariton where electromagnetic waves couple to the collective oscillations of valance electrons. It improves solar energy conversion efficiency by enhancing the light absorption in the semiconductor (e.g. TiO2) and directly transferring the plasmonic energy from the metal to the metal oxide support to induce the charge separation. The proposed multidisciplinary research represents one of the first attempts to systematically investigate and utilize the plasmonic effect in advanced water/wastewater treatment. The underlying hypothesis is that the catalytic ozonation of recalcitrant organic compounds can be achieved at a much higher efficiency with minimum by-products formation by using plasmonic effects of copper-based catalysts (earth abundant metal) on metal oxide supports. Irradiating plasmonic nanoparticles with targeted geometric and plasmonic properties with light at their plasmon frequency will facilitate the generation of radical species via ozone decomposition and lead to more complete oxidation of organic contaminants (low organic byproducts formation). The results of the proposed work will provide insights into the novel treatment technology, data for process performance, guidelines for catalyst design and synthesis, and information of fate and transformation of representative emerging contaminants through advanced treatment processes. With LEDs (light emitting diodes) as the light source, this innovative process can be easily implemented in water treatment especially where ozone is used for disinfection. It can also be used in advanced treatment of wastewater for direct/indirect potable reuse. The overarching hypothesis is, that the catalytic ozonation of recalcitrant organic compounds can be achieved at a much higher efficiency with minimum byproducts formation by using plasmonic effects of copper-based catalysts (earth abundant metal) on metal oxide supports. To test this hypothesis the PIs will: (1) Design and synthesize Cu-based catalysts with targeted geometric structure and plasmonic properties using colloidal chemical synthesis as well as atomic layer deposition; (2) Test the catalysts in laboratory plasmon-enhanced catalytic ozonation process focusing on the degree of mineralization, inhibition of bromate formation, and catalyst reusability and stability; (3) Identify the active sites of the catalysts investigate the reaction mechanisms; and, (4) Apply plasmon-enhanced catalytic ozonation in various water matrices including surface water, secondary effluent and reverse osmosis (RO) concentrate produced during water reuse. The PIs have also developed a detailed and comprehensive educational plan that involves graduate and undergraduate students, and high school students working in their laboratories.
1606117的人口迅速增长,淡水源短缺,气候变化以及由于工业化和城市化引起的水源受损的压力带来了水处理技术的主要挑战。为了更好地确保需要高质量的饮用水,需要新的,创新的和具有成本效益的过程。该项目可能是增强催化臭氧化的变化步骤,以破坏新兴的污染物。晚期氧化过程通常涉及产生羟基自由基,可用于去除水和废水中的顽固有机污染物。但是,当前的晚期氧化过程通常是能量密集型的,可能形成不希望的副产物。该项目将研究增强的晚期氧化过程作为替代解决方案。该项目旨在调查涉及等离子增强催化臭氧化的创新晚期水处理过程,以规避当前晚期氧化过程的局限性,该过程的局限性低于高能量效率和低副产物形成。当光子的频率(即辐照光的波长)与表面电子的固有频率匹配时,会发生局部表面等离子体共振,从而导致表面电子对正核背景的强振荡。等离子体金属(例如Ag,Au和Cu)支持表面等离子体极化,其中电磁波夫妇夫妇到价电子的集体振荡。它通过增强半导体的光吸收(例如TiO2),并将等离子体能从金属转移到金属氧化物支撑以诱导电荷分离来提高太阳能转化效率。拟议的多学科研究代表了系统研究和利用等离子水/废水处理中的等离子效应的首次尝试之一。潜在的假设是,通过使用基于铜的催化剂(地球丰富金属)对金属氧化物载体的等离子作用,可以在最小副产品形成下以更高的效率来实现顽固有机化合物的催化臭氧化。具有靶向几何和等离子特性的辐照等离子纳米颗粒在其等离子频率下具有光线,将通过臭氧分解来促进自由基物种的产生,并导致有机污染物的更完整的氧化(低有机副产物形成)。拟议工作的结果将提供有关新型治疗技术的见解,过程性能的数据,催化剂设计和合成指南以及命运的信息以及通过高级治疗过程的代表性新兴污染物的转化。将LED(发射二极管)作为光源,可以轻松地在水处理中实施这种创新过程,尤其是在使用臭氧进行消毒的情况下。它也可以用于对废水的高级处理,用于直接/间接饮用的再利用。总体假设是,通过使用基于铜的催化剂(地球丰富金属)对金属氧化物载体的等离子效应,可以在最小副产物形成下以更高的效率来实现顽固有机化合物的催化臭氧化。为了检验该假设,PIS将:(1)使用胶体化学合成以及原子层沉积的设计和合成具有靶向几何结构和等离子特性的基于CU的催化剂; (2)测试实验室等离子体增强的催化臭氧化过程中的催化剂,重点是矿化程度,抑制溴化物形成以及催化剂可重复性和稳定性; (3)确定催化剂的活性位点研究了反应机制; (4)在水再利用期间产生的各种水基质,包括地表水,次级废水和反渗透(RO)浓缩物,在各种水基质中施加等离子增强的催化臭氧化。 PI还制定了一项详细且全面的教育计划,涉及研究生和本科生,以及在实验室工作的高中生。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of Matrix Effects in Laboratory Studies of Catalytic Ozonation Processes
Plasmon-enhanced Catalytic Ozonation for Efficient Removal of Recalcitrant Water Pollutants
等离激元增强催化臭氧化有效去除顽固水污染物
  • DOI:
    10.1021/acsestengg.1c00020
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.1
  • 作者:
    Yang, Wenwen;Bunian, Muntaseer;Chen, Xiankun;Heald, Steve;Yu, Lei;Wen, Jianguo;Lei, Yu;Wu, Tingting
  • 通讯作者:
    Wu, Tingting
Metallic ion leaching from heterogeneous catalysts: an overlooked effect in the study of catalytic ozonation processes
  • DOI:
    10.1039/c7ew00273d
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenwen Yang;B. Vogler;Y. Lei;Tingting Wu
  • 通讯作者:
    Wenwen Yang;B. Vogler;Y. Lei;Tingting Wu
Byproduct formation in heterogeneous catalytic ozonation processes
  • DOI:
    10.1039/d2va00216g
  • 发表时间:
    2023-04-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu,Tingting
  • 通讯作者:
    Wu,Tingting
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingting Wu其他文献

High-Resolution Functional Profiling of a Gammaherpesvirus RTA Locus in the Context of the Viral Genome (cid:1) †
病毒基因组背景下伽马疱疹病毒 RTA 基因座的高分辨率功能分析 (cid:1) †
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Arumugaswami;R. Sitapara;Seungmin Hwang;M. Song;T.;Nancy Su;E. Sue;Vidhya Kanagavel;Fangfang Xing;Xiaolin Zhang;Ming;H. Deng;Tingting Wu;S. Kanagavel;Lulu Zhang;S. Dandekar;J. Papp;R. Sun
  • 通讯作者:
    R. Sun
Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes
提高原位配体掺杂 ZIF-8 膜在高温高压下的丙烯/丙烷分离性能
  • DOI:
    10.1016/j.memsci.2020.118655
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Eryue Song;Kaifeng Wei;Haiqian Lian;Jingxian Hua;Hongxu Tao;Tingting Wu;Yichang Pan;Weihong Xing
  • 通讯作者:
    Weihong Xing
Fixed-point proximity algorithms solving an incomplete Fourier transform model for seismic wavefield modeling
定点邻近算法求解地震波场建模的不完全傅立叶变换模型
  • DOI:
    10.1016/j.cam.2020.113208
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuesheng Xu;Lixin Shen;Tingting Wu
  • 通讯作者:
    Tingting Wu
Finite volume method for solving the stochastic Helmholtz equation
求解随机亥姆霍兹方程的有限体积法
  • DOI:
    10.1186/s13662-019-2011-x
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Ruimin Xu;Tingting Wu
  • 通讯作者:
    Tingting Wu
Comparison of the Correlation Between Coagulation Indices and Rivaroxaban Concentrations
凝血指数与利伐沙班浓度相关性比较

Tingting Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingting Wu', 18)}}的其他基金

I-Corps: Novel Catalytic Ozonation Processes for Advanced Water and Wastewater Treatment
I-Corps:用于高级水和废水处理的新型催化臭氧化工艺
  • 批准号:
    2309263
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant

相似国自然基金

等离子体催化合成氨反应动力学调控及增强机制研究
  • 批准号:
    22278032
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
等离子体催化合成氨反应动力学调控及增强机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
等离子体增强原子层沉积原位构筑二维石墨炔基单原子氧还原催化剂及构效关系研究
  • 批准号:
    U22A20253
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
单原子金属-二维CeO2杂化材料的液相等离子体制备及光增强Mars-Van Krevelen催化氧化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
等离子体增强原子层沉积原位构筑二维石墨炔基单原子氧还原催化剂及构效关系研究
  • 批准号:
    52272293
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
  • 批准号:
    24K17765
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247709
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Optimizing Enhanced Hammerhead Ribozymes for Retinal Nucleic Acid Therapeutics
优化用于视网膜核酸治疗的增强型锤头核酶
  • 批准号:
    10638529
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247710
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了