NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis

NSF-DFG Echem:电化学增强低温催化氨合成

基本信息

  • 批准号:
    2140971
  • 负责人:
  • 金额:
    $ 37.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

As the nation and the world move toward carbon-free energy economies, ammonia will likely play significant roles as a hydrogen carrier. Today, essentially all ammonia is produced in high pressure Haber-Bosch plants at very large scale. There is a growing need for smaller scale, geographically distributed, ammonia synthesis using renewable resources. However, because of inherent thermodynamic and kinetic limitations, typical catalyst-based thermal processes (e.g., Haber-Bosch) are not economic at smaller scale. The present project seeks to enable distributed ammonia synthesis using electrochemical interactions that significantly reduce activation barriers. The research relies on the combined, complementary, and unique expertise of the partners in the context of materials synthesis, characterization and process demonstration (KIT) and physically based modeling of the electrochemistry, charged-defect transport, and catalysis (CSM).This joint project addresses significant scientific challenges in transitioning to environmentally friendly ammonia production as an energy carrier and commodity chemical. The project’s objective is to develop and demonstrate electrochemical enhancement that enables low-temperature and low-pressure ammonia synthesis. Nanophase Ru is dispersed on a proton-conducting BCZY support (BaCe1-x-yZrxYyO3-δ). Directly polarizing the catalyst structure with an electric field decreases the kinetically limiting barrier for N2 activation. Although the proposed research is scientifically fundamental, it has excellent technology potential for cost-effective distributed production of ammonia. The research focuses on postulating, modeling, and validating proposed chemical behaviors. The electrical field is expected to reduce rate-limiting N2 dissociation barriers via two synergistic mechanisms:1. Electrical fields affect the proton-conducting BCZY support, enabling H2 dissociation to form protons that can activate gas-phase N2, directly forming desired surface adsorbates such as NH on the BCZY support.2. Fields in the range of 0.1 to1.0 V/Å on dispersed nano-Ru also reduce the nitrogen activation barrier. The energy barrier for nitrogen activation Ru varies between 30-42 kJ mol-1. Based on our validated reaction mechanisms for Ba-promoted Ru/YSZ, simulations show that reducing the N2 dissociation energy by 10 kJ mol-1 will increase the ammonia formation rate by an order of magnitude.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着国家和世界走向无碳能源经济,氨可能会作为氢载体发挥重要作用。 今天,基本上所有的氨都是在高压哈伯-博世工厂中以非常大的规模生产的。 越来越需要使用可再生资源的较小规模、地理上分布的氨合成。 然而,由于固有的热力学和动力学限制,典型的基于催化剂的热过程(例如,Haber-Bosch)在较小的规模上是不经济的。 本项目旨在使分布式氨合成使用电化学相互作用,显着降低活化障碍。 该研究依赖于合作伙伴在材料合成、表征和工艺演示(KIT)以及电化学、带电缺陷传输和催化(CSM)的物理建模方面的综合、互补和独特的专业知识。该联合项目解决了向环境友好型氨生产过渡的重大科学挑战,作为能源载体和商品化学品。该项目的目标是开发和展示能够实现低温和低压氨合成的电化学增强。纳米Ru分散在质子传导BCZY载体(BaCe 1-x-yZrxYyO 3-δ)上。用电场直接极化催化剂结构降低了N2活化的动力学限制势垒。虽然拟议的研究是科学基础,但它具有良好的技术潜力,可用于具有成本效益的分布式氨生产。该研究的重点是假设,建模和验证拟议的化学行为。预期电场通过两种协同机制降低限速N2解离势垒:1.电场影响质子传导BCZY载体,使得H2解离以形成可以活化气相N2的质子,直接在BCZY载体上形成所需的表面吸附物,例如NH。在分散的纳米Ru上的0.1至1.0 V/V范围内的场也降低了氮活化势垒。氮活化Ru的能垒在30-42 kJ mol-1之间变化。基于我们验证的Ba促进的Ru/YSZ的反应机理,模拟表明,N2离解能降低10 kJ mol-1,氨的生成速率将增加一个数量级。这项研究由NSF-DFG电合成和电催化牵头机构活动资助(NSF-DFG ECHEM)机会NSF 20- 578.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Kee其他文献

A total least squares approach to sensor characterisation
  • DOI:
    10.1016/s1474-6670(17)34781-x
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter C.F. Hung;Seán McLoone;George Irwin;Robert Kee
  • 通讯作者:
    Robert Kee

Robert Kee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
  • 批准号:
    2055245
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
  • 批准号:
    2055689
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
  • 批准号:
    2139971
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
  • 批准号:
    2140038
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Future Fuels and Chemicals from Electrocatalytic Upgrading: Advancing Kinetic Understanding using Operando Spectroscopic Approaches and Quantum Chemical Modeling
NSF-DFG Echem:电催化升级的未来燃料和化学品:使用操作光谱方法和量子化学模型促进动力学理解
  • 批准号:
    2055068
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Continuing Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了