Geometry and classifications of Ricci solutions
里奇解的几何和分类
基本信息
- 批准号:1606820
- 负责人:
- 金额:$ 30.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is a central theme in mathematics to categorize and classify geometric objects. One effective way of doing so is to prescribe a canonical metric for each object, namely a canonical way to measure the distance in an object. It is a classical result that each two dimensional surface carries a certain metric with constant curvature. For the three dimensional case, the problem becomes vastly more difficult. It was a much celebrated achievement of Perelman who successfully tackled the problem about ten years ago. He adopted an approach developed by Hamilton who has devised a way of deforming an arbitrary metric via a set of differential equations. A crucial step in understanding this set of equations for Perelman is to classify the so-called self-similar solutions. The current project aims to extend Perelman's work to dimension four and beyond. It is expected that the results will aid in the study of four dimensional spaces. Ricci solitons, as self-similar solutions to the Ricci flows, play a central role in the singularity analysis of the Ricci flows. The main theme of this project is to study shrinking Ricci solitons. In dimensions two and three, they have been completely classified. The classification has found important applications in the resolution of the Poincare and geometrization conjecture for three dimensional manifolds. The current project aims to obtain a classification for four dimensional complete gradient shrinking Ricci solitons, building upon the recent progress including curvature estimates and a description of the structure at infinity. Another goal of the project is to lay some foundation toward a possible classification for high dimensional gradient shrinking Ricci solitons.
对几何对象进行分类和归类是数学中的一个中心主题。这样做的一种有效方法是为每个对象规定一个规范度量,即测量对象中距离的规范方法。每个二维曲面都带有一个具有常曲率的度量,这是一个经典的结果。对于三维情况,问题变得困难得多。这是一个非常著名的成就佩雷尔曼谁成功地解决了这个问题约十年前。他采用了一种方法开发的汉密尔顿谁设计了一种方式变形任意度量通过一组微分方程。理解佩雷尔曼方程组的关键一步是对所谓的自相似解进行分类。目前的项目旨在将佩雷尔曼的工作扩展到四维及更远的空间。预计这些结果将有助于四维空间的研究。 Ricci孤子作为Ricci流的自相似解,在Ricci流的奇异性分析中起着重要的作用。本项目的主要内容是研究收缩的Ricci孤子。在二维和三维空间中,它们被完全分类。这种分类在Poincare猜想的求解和三维流形的几何化中有重要的应用。目前的项目旨在获得一个四维完全梯度收缩Ricci孤子的分类,建立在最近的进展,包括曲率估计和无穷远结构的描述。本项目的另一个目标是为高维梯度收缩Ricci孤子的分类奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiaping Wang其他文献
Structure-Guided Deep Video Inpainting
结构引导深度视频修复
- DOI:
10.1109/tcsvt.2020.3034422 - 发表时间:
2021-08 - 期刊:
- 影响因子:8.4
- 作者:
Chaoqun Wang;Xuejin Chen;Shaobo Min;Jiaping Wang;Zhengjun Zha - 通讯作者:
Zhengjun Zha
Interface dipole enhancement effect and enhanced Rayleigh scattering
界面偶极子增强效应和增强瑞利散射
- DOI:
10.1007/s12274-014-0687-5 - 发表时间:
2014 - 期刊:
- 影响因子:9.9
- 作者:
Xingcan Dai;Peng Liu;Yang Wei;Jiaping Wang;Haitao Yang;Lina Zhang;Qunqing Li;Shoushan Fan;Kaili Jiang - 通讯作者:
Kaili Jiang
The heat flow and harmonic maps between complete manifolds
- DOI:
10.1007/bf02921799 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Jiaping Wang - 通讯作者:
Jiaping Wang
New Insight in understanding oxygen reduction and oxidation in solid-state lithium-oxygen batteries using in situ environmental scanning electron microscope
使用原位环境扫描电子显微镜了解固态锂氧电池中氧还原和氧化的新见解
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:10.8
- 作者:
Hao Zheng;Dongdong Xiao;Xing Li;Yali Liu;Yang Wu;Jiaping Wang;Kaili Jiang;Chun Chen;Lin Gu;Xianlong Wei;Yong-Sheng Hu;Qing Chen;Hong Li - 通讯作者:
Hong Li
Reduced glutathione ameliorates liver function, oxidative stress and inflammation after interventional therapy for hepatocellular carcinoma
还原型谷胱甘肽可改善肝细胞癌介入治疗后的肝功能、氧化应激和炎症
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yang Ke;Tiangen Wu;Xuefen Lei;Cheng Zhang;Jian Zhou;Jinze Li;Heng Zhang;Xiaoxing Chen;Jiaping Wang;Lin Wang - 通讯作者:
Lin Wang
Jiaping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiaping Wang', 18)}}的其他基金
Spectrum, Geometry and Topology of Complete Manifolds
完全流形的谱、几何和拓扑
- 批准号:
1105799 - 财政年份:2011
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
2008 Yamabe Memorial Symposium, September 2008
2008 年山边纪念研讨会,2008 年 9 月
- 批准号:
0755733 - 财政年份:2008
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Ricci curvature, Analysis and Geometry
里奇曲率、分析与几何
- 批准号:
0706706 - 财政年份:2007
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
2004 Yamabe Memorial Symposium, University of Minnesota
2004年山边纪念研讨会,明尼苏达大学
- 批准号:
0408283 - 财政年份:2004
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Harmonic Forms and Topology of Complete Manifolds
完全流形的调和形式和拓扑
- 批准号:
0404817 - 财政年份:2004
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Yamabe Memorial Symposium, September 20-22, 2002, University of Minnesota
Yamabe 纪念研讨会,2002 年 9 月 20-22 日,明尼苏达大学
- 批准号:
0205776 - 财政年份:2002
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Function Theory and Topology of Complete Manifolds
函数论与完备流形拓扑
- 批准号:
0072181 - 财政年份:2000
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
相似海外基金
UKRI/BBSRC-NSF/BIO: Unifying Pfam protein sequence and ECOD structural classifications with structure models
UKRI/BBSRC-NSF/BIO:通过结构模型统一 Pfam 蛋白质序列和 ECOD 结构分类
- 批准号:
BB/X012492/1 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Research Grant
Enriching MGnify Genomes to capture the full spectrum of the microbiota and bolster taxonomic classifications
丰富 MGnify 基因组以捕获微生物群的全谱并支持分类学分类
- 批准号:
BB/V01868X/1 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Research Grant
BCL-2 Family Interactions With 2-Trans-Hexadecenal Define Pro-Apoptotic And Anti-Apoptotic Classifications
BCL-2 家族与 2-反式十六烯醛的相互作用定义了促凋亡和抗凋亡分类
- 批准号:
2217138 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
UKRI/BBSRC-NSF/BIO: Unifying Pfam protein sequence and ECOD structural classifications with structure models
UKRI/BBSRC-NSF/BIO:通过结构模型统一 Pfam 蛋白质序列和 ECOD 结构分类
- 批准号:
2224128 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
Enriching MGnify Genomes to capture the full spectrum of the microbiota and bolster taxonomic classifications
丰富 MGnify 基因组以捕获微生物群的全谱并支持分类学分类
- 批准号:
BB/V018450/1 - 财政年份:2021
- 资助金额:
$ 30.11万 - 项目类别:
Research Grant
Classifications of compact complex manifolds admitting non-isomorphic endomorphisms
承认非同构自同态的紧复流形的分类
- 批准号:
20K03518 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bicategorical covering theory and derived equivalence classifications
双类别覆盖理论和派生的等价分类
- 批准号:
18K03207 - 财政年份:2018
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Characterisations and Classifications of graphs by their Eigenvalues
按特征值对图进行表征和分类
- 批准号:
16K05263 - 财政年份:2016
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of the treatment of systemic lupus erythematosus by immunological classifications
通过免疫学分类优化系统性红斑狼疮的治疗
- 批准号:
15K19579 - 财政年份:2015
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Estimates of animal movement probabilities using observation data, circuit theory and updated land cover classifications
使用观测数据、电路理论和更新的土地覆盖分类来估计动物运动概率
- 批准号:
481356-2015 - 财政年份:2015
- 资助金额:
$ 30.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's