Measurement and Control in Open Quantum Systems

开放量子系统中的测量和控制

基本信息

  • 批准号:
    1607156
  • 负责人:
  • 金额:
    $ 31.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

According to quantum mechanics, particles do not have definite properties such as position and momentum, but are instead described by a "complex valued wavefunction" which describes them mathematically in terms of probabilities. The wave nature of quantum particles means that these particles can exist in superpositions of seemingly disparate states, for example a quantum particle could be in two places at once, or heading in two different directions, or occupy a superposition of two different energy levels. The evolution of this wavefunction obeys the Schrödinger equation which was formulated in 1925. Since its formulation, the Schrödinger equation has been applied to understand the properties of atoms and molecules and the basis for chemistry and materials. Yet, the Schrödinger equation only applies to isolated quantum systems. If one is to measure the properties of a quantum particle with suitable precision, a definite answer may result even if the particle is in a superposition of states. Thus the act of measurement collapses the wavefunction from an initial superposition to a definite state. This collapse process cannot be described by the Schrödinger equation and reconciling the evolution of measured "open" quantum systems with the theory has been a topic of intense debate and research since the origins of quantum theory. The goal of this project is to deepen our understanding of quantum measurement and to harness the measurement interaction to control the evolution of quantum particles. The approach will use microscopic superconducting circuits as artificial atoms and the interaction of these atoms with microwave light to create open quantum systems. The team will conduct a series of experiments that explore the measurement process and how measurement can be used to control quantum evolution, an important component of emerging quantum-based technologies.This project will utilize fabricated quantum systems (superconducting artificial atoms) and the physics of cavity quantum electrodynamics to create systems with unprecedented control of the quantum environment. The team will undertake a series of experiments that explore the physics of quantum measurement, quantum control, and fundamental symmetries. The first experiment examines the boundary between quantum and classical information. A few photon signal will be entangled with the energy states of an artificial atom and then controllably amplified (or squeezed) with a superconducting parametric amplifier, enlarging the Hilbert space of the few photon pointer state. A second amplifier will then be used to probe the resulting entanglement between the amplified pointer state and atom. The second experiment examines the process of radiative decay and how detection of spontaneously emitted photons can be used to control the evolution of the atomic states. A parametric amplifier will be used to perform homodyne measurement of radiation emitted from a quantum emitter. The team will study how the choice of homodyne measurement angle can be used to steer the evolution of the emitter's state. The third project will create a system of two artificial atoms that exhibits space-time inversion symmetry to study the parity-time symmetry breaking phase transition. The parity-time symmetric system will be created through quantum reservoir engineering, inducing loss for one atom and gain for the other atom. The steady states of the system will be probed through spectroscopy and quantum state tomography as a function of the coupling between the two atoms.
根据量子力学,粒子没有确定的性质,如位置和动量,而是由一个“复值波函数”来描述,它在数学上用概率来描述它们。量子粒子的波动性质意味着这些粒子可以存在于看似不同状态的叠加中,例如量子粒子可以同时存在于两个地方,或者朝着两个不同的方向前进,或者占据两个不同能级的叠加。这个波函数的演化遵循1925年制定的薛定谔方程。自薛定谔方程形成以来,它已被应用于理解原子和分子的性质以及化学和材料的基础。然而,薛定谔方程只适用于孤立的量子系统。如果人们要以适当的精度测量量子粒子的性质,即使粒子处于态的叠加态,也可能得到一个确定的答案。因此,测量的行为使波函数从初始叠加态坍缩到确定态。这种坍缩过程不能用薛定谔方程来描述,而调和测量的“开放”量子系统的演化与理论一直是量子理论起源以来激烈争论和研究的主题。该项目的目标是加深我们对量子测量的理解,并利用测量相互作用来控制量子粒子的演化。 该方法将使用微观超导电路作为人造原子,并将这些原子与微波光相互作用以创建开放的量子系统。 该团队将进行一系列实验,探索测量过程以及如何使用测量来控制量子进化,这是新兴量子技术的重要组成部分。该项目将利用制造的量子系统(超导人造原子)和腔量子电动力学的物理学原理,创建对量子环境具有前所未有控制的系统。 该团队将进行一系列实验,探索量子测量,量子控制和基本对称性的物理学。 第一个实验考察了量子信息和经典信息之间的界限。 少数光子信号将与人造原子的能态纠缠,然后用超导参量放大器可控地放大(或压缩),扩大少数光子指针态的希尔伯特空间。 第二个放大器将被用来探测放大后的指针态和原子之间的纠缠。 第二个实验研究辐射衰变的过程,以及如何检测自发发射的光子可以用来控制原子状态的演变。 将使用参量放大器来执行从量子发射器发射的辐射的零差测量。 该团队将研究如何选择零差测量角度来控制发射器状态的演变。第三个项目将创建一个具有时空反转对称性的两个人造原子系统,以研究宇称-时间对称性破缺相变。 宇称-时间对称系统将通过量子库工程来创建,导致一个原子的损失和另一个原子的增益。 系统的稳态将通过光谱学和量子态层析成像作为两个原子之间耦合的函数来探测。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrating superfluids with superconducting qubit systems
将超流体与超导量子比特系统集成
  • DOI:
    10.1103/physreva.101.012336
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lane, J. R.;Tan, D.;Beysengulov, N. R.;Nasyedkin, K.;Brook, E.;Zhang, L.;Stefanski, T.;Byeon, H.;Murch, K. W.;Pollanen, J.
  • 通讯作者:
    Pollanen, J.
Quantum state tomography across the exceptional point in a single dissipative qubit
  • DOI:
    10.1038/s41567-019-0652-z
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Naghiloo, M.;Abbasi, M.;Murch, K. W.
  • 通讯作者:
    Murch, K. W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kater Murch其他文献

Beyond strong
远超强大
  • DOI:
    10.1038/nphys3931
  • 发表时间:
    2016-10-10
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Kater Murch
  • 通讯作者:
    Kater Murch

Kater Murch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kater Murch', 18)}}的其他基金

QLCI-CG: Center for Quantum Sensors
QLCI-CG:量子传感器中心
  • 批准号:
    1936526
  • 财政年份:
    2019
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
CAREER: Heat, Work and Information in Quantum Circuits
职业:量子电路中的热、功和信息
  • 批准号:
    1752844
  • 财政年份:
    2018
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
  • 批准号:
    2312456
  • 财政年份:
    2023
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SBIR Phase II: Open Hardware and Software Platform to Enable Control of IoT Devices for People with Disabilities
SBIR 第二阶段:开放硬件和软件平台,帮助残疾人控制物联网设备
  • 批准号:
    2136794
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Cooperative Agreement
Open Markets in Ghana and Covid-19 interventions. Competing strategies of infection control and lessons for relational urban health
加纳的开放市场和 Covid-19 干预措施。
  • 批准号:
    468356683
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Research Grants
Collaborative Research: CCRI: New: Open AI Cellular (OAIC): Prototyping Artificial Intelligence-Enabled Control and Testing Systems for Cellular Communications Research
合作研究:CCRI:新:开放人工智能蜂窝 (OAIC):为蜂窝通信研究构建人工智能控制和测试系统原型
  • 批准号:
    2120442
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Open AI Cellular (OAIC): Prototyping Artificial Intelligence-Enabled Control and Testing Systems for Cellular Communications Research
合作研究:CCRI:新:开放人工智能蜂窝 (OAIC):为蜂窝通信研究构建人工智能控制和测试系统原型
  • 批准号:
    2120411
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Optimal Control of Open Quantum Systems
开放量子系统的最优控制
  • 批准号:
    2111221
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Proposal: Tools and Research Priority Analyses for Development of Open-Source AI-Enabled Control and Testing Framework for 6G Cellular Research
CCRI:规划:协作提案:为 6G 蜂窝研究开发开源人工智能控制和测试框架的工具和研究优先分析
  • 批准号:
    2016724
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
NRI: INT: Collaborative Research: An Open-Source Framework for Continuous Torque Control of Intuitive Robotic Prosthetic Legs
NRI:INT:协作研究:直观机器人假腿连续扭矩控制的开源框架
  • 批准号:
    2024237
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Control of Laminar flow in open space for subcellular operation
亚细胞操作开放空间层流控制
  • 批准号:
    20K22555
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Automated control of a robotic arm on a moving wheelchair to open and close doors
自动控制移动轮椅上的机械臂来打开和关闭门
  • 批准号:
    550027-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了