Atom-resolved microscopy of exotic superfluids in spin-imbalanced Fermi gases
自旋不平衡费米气体中奇异超流体的原子分辨显微镜
基本信息
- 批准号:1607277
- 负责人:
- 金额:$ 47.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical:Superconductors, materials that have electrical currents that flow without losses, have important applications in building powerful electromagnets, sensitive sensors of magnetic fields and magnetic levitation devices. Understanding the behavior of superconductors in magnetic fields is crucial to building better superconducting devices. While large magnetic fields usually suppress superconductivity, they have also been predicted to lead to exotic superconducting phases of matter under the proper conditions. One such phase was proposed over fifty years ago, but has never been directly observed in any material. This research effort aims to discover this phase of matter in a gas of atoms cooled to very low temperatures. On the educational side, the project trains undergraduates, graduate students and a post-doctoral researcher in the techniques of ultracold gases. To complement the experimental effort, the principal investigator is developing and teaching a graduate course in ultracold atom physics, focusing on experimental techniques and potential applications. The course serves to train graduate students from the PI's lab in teaching through guest lecture opportunities. Technical:The competition between superconductivity and magnetism can give rise to exotic phases of quantum matter. Over fifty years ago, Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) predicted a quantum phase where the Cooper pairs of a superconductor in a magnetic field condense at non-zero momentum. There has been indirect evidence for the existence of this phase in layered organic superconductors, heavy fermion materials and ultracold atomic gases, but a direct detection of its defining signatures has been elusive. The goal of this project is the direct detection of the FFLO phase in a superfluid atomic Fermi gas with spin imbalance. The research team uses atom-resolved in-situ imaging of the gas to search for its smoking gun signature: a spatial oscillation of the magnetization and superfluid gap that depends on the polarization of the gas. The search for this phase is conducted in a lower-dimensional lattice system where Fermi surface nesting effects are predicted to enhance the region of the phase diagram occupied by the FFLO phase. The team seeks to understand the low-temperature phase diagram of spin-imbalanced two-dimensional Fermi gases, use quantum gas microscopy to image imprinted solitonic lattices through the sharp variation of their magnetization and local density of states and apply these imaging techniques to search for FFLO in a thermal equilibrium state.
非技术性:超导体是一种电流无损耗的材料,在制造强大的电磁铁、敏感的磁场传感器和磁悬浮设备方面有着重要的应用。了解超导体在磁场中的行为对于建造更好的超导设备至关重要。虽然强磁场通常会抑制超导电性,但在适当的条件下,它们也被预测会导致物质的奇异超导相。五十多年前就提出了这样一个相,但从未在任何材料中被直接观察到。这项研究的目的是在冷却到极低温度的原子气体中发现这种物质相。在教育方面,该项目对本科生、研究生和博士后研究员进行超冷气体技术培训。为了补充实验工作,首席研究人员正在开发和教授一门关于超冷原子物理的研究生课程,重点是实验技术和潜在的应用。这门课程旨在通过客座讲座的机会,培训PI实验室的研究生进行教学。技术:超导和磁性之间的竞争可能会产生量子物质的奇异相。五十多年前,Fulde、Ferrell、Larkin和Ovchinnikov(FFLO)预测了超导体在磁场中的库珀对以非零动量凝聚的量子相。有间接证据表明,在层状有机超导体、重费米子材料和超冷原子气体中存在这种相,但对其定义特征的直接检测一直难以捉摸。这个项目的目标是直接探测自旋不平衡的超流原子费米气体中的FFLO相。研究小组使用原子分辨的气体原位成像来寻找它的确凿证据:磁化和超流体间隙的空间振荡取决于气体的极化。该相的寻找是在低维晶格系统中进行的,其中预测了费米面嵌套效应以增强FFLO相占据的相图区域。该团队试图了解自旋不平衡的二维费米气体的低温相图,使用量子气体显微镜通过其磁化强度和局域态密度的急剧变化来成像印迹孤子晶格,并应用这些成像技术来搜索处于热平衡状态的FFLO。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Waseem Bakr其他文献
Anomalous fluid flow in quantum systems
量子系统中的异常流体流动
- DOI:
10.1126/science.abn6376 - 发表时间:
2022 - 期刊:
- 影响因子:56.9
- 作者:
A. Morningstar;Waseem Bakr - 通讯作者:
Waseem Bakr
Pairing with a twist
- DOI:
10.1038/nphys2851 - 发表时间:
2013-12 - 期刊:
- 影响因子:19.6
- 作者:
Waseem Bakr - 通讯作者:
Waseem Bakr
Waseem Bakr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Waseem Bakr', 18)}}的其他基金
Programmable Optical Tweezer Arrays for Studying Strongly Correlated Fermions
用于研究强相关费米子的可编程光镊阵列
- 批准号:
2110475 - 财政年份:2021
- 资助金额:
$ 47.66万 - 项目类别:
Continuing Grant
Microscopy of Ultracold Polar Molecules in Optical Lattices
光学晶格中超冷极性分子的显微镜观察
- 批准号:
1912154 - 财政年份:2019
- 资助金额:
$ 47.66万 - 项目类别:
Continuing Grant
相似海外基金
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
- 批准号:
23K26612 - 财政年份:2024
- 资助金额:
$ 47.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
- 批准号:
LE240100073 - 财政年份:2024
- 资助金额:
$ 47.66万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Imaging trions and their dynamics in momentum space
动量空间中的三重子及其动力学成像
- 批准号:
23H01110 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
- 批准号:
23H01919 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
- 批准号:
2303085 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2401851 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
- 批准号:
2303084 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Standard Grant
Microfluidic Preparation of Specimens to Enable Submillisecond Time-Resolved Cryo-EM
样品的微流体制备以实现亚毫秒时间分辨冷冻电镜
- 批准号:
10736937 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Super-resolved multiphoton microscopy with dual output ultrafast laser
具有双输出超快激光的超分辨率多光子显微镜
- 批准号:
10664267 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别:
Blunting of the Myofilament Beta-Adrenergic Response in HCM: Structural-Dynamic Mechanisms
HCM 中肌丝 β 肾上腺素反应的钝化:结构动力学机制
- 批准号:
10748921 - 财政年份:2023
- 资助金额:
$ 47.66万 - 项目类别: