US-German Research Proposal: Neurocomputation in the Visual Periphery: Experiments and Models
美德研究计划:视觉外围的神经计算:实验和模型
基本信息
- 批准号:1607486
- 负责人:
- 金额:$ 68.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Peripheral vision comprises over 99.99% of the visual field. Its strengths and limitations strongly constrain visual perception -- what humans can see at a glance, and the processes by which they move their eyes to piece together information about the world. Peripheral vision differs from foveal vision in complex and interesting ways, most importantly due to "crowding," in which identifying a peripheral stimulus can be substantially impaired by the presence of other, nearby stimuli. This project will examine the nature of the encoding in visual cortex, through development and testing of a set of models of peripheral vision. These models will be targeted at answering key questions about the neurobiological mechanisms. The collaborating investigators, in the US and Germany, will develop models and create a benchmark dataset of behavioral results to be explained. The models and dataset will be made freely available, to aid other researchers and to inform the development of applications such as heads up displays and user interfaces. This work will provide insight into what features are encoded in visual cortex, as well as what tradeoffs may have led the visual system to develop that encoding. Understanding those tradeoffs may inform computer vision which, like human vision, faces constraints on processing capacity. The development of new model variants will be based on insights from neurophysiology, natural image statistics, sparse coding, and the recent success of convolutional neural networks in artificial intelligence. The investigators will gather benchmark behavioral phenomena far richer than existing crowding datasets, through a combination of studying natural image tasks and model-driven experiments. They will then compare predictions of the new models, as well as of Dr. Rosenholtz's existing high-performing model of peripheral vision, on the benchmark dataset. Doing so will identify the best-performing model(s), and answer key questions about the nature of pooling computations and of non-linear operators, and about the complexity, nature, and purpose of the features encoded by peripheral vision.A companion project is being funded by the Federal Ministry of Education and Research, Germany (BMBF).
周边视觉占视野的99.99%以上。它的优势和局限性强烈地限制了视觉感知--人类一眼就能看到的东西,以及他们移动眼睛拼凑世界信息的过程。周边视觉以复杂和有趣的方式不同于中央凹视觉,最重要的是由于“拥挤”,其中识别周边刺激可能会因其他附近刺激的存在而受到严重损害。这个项目将通过开发和测试一套周边视觉模型来研究视觉皮层编码的本质。这些模型将针对回答有关神经生物学机制的关键问题。美国和德国的合作研究人员将开发模型,并创建一个待解释的行为结果的基准数据集。这些模型和数据集将免费提供,以帮助其他研究人员,并为平视显示器和用户界面等应用程序的开发提供信息。这项工作将深入了解视觉皮层中编码的特征,以及可能导致视觉系统开发这种编码的权衡。理解这些权衡可以为计算机视觉提供信息,就像人类视觉一样,计算机视觉也面临着处理能力的限制。新模型变体的开发将基于神经生理学、自然图像统计、稀疏编码以及最近卷积神经网络在人工智能中的成功。研究人员将通过研究自然图像任务和模型驱动实验的结合,收集比现有拥挤数据集丰富得多的基准行为现象。然后,他们将在基准数据集上比较新模型的预测,以及Rosenholtz博士现有的高性能周边视觉模型的预测。这样做将确定性能最好的模型,并回答有关池计算和非线性运算符的性质,以及外围视觉编码特征的复杂性,性质和目的的关键问题。一个配套项目正在由联邦教育和研究部,德国(BMBF)资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Rosenholtz其他文献
The effect of background clutter on visual search in video conferencing
- DOI:
10.1186/s41235-025-00643-4 - 发表时间:
2025-07-09 - 期刊:
- 影响因子:3.100
- 作者:
Yelda Semizer;Ruth Rosenholtz - 通讯作者:
Ruth Rosenholtz
Effects of maze appearance on maze solving
- DOI:
10.3758/s13414-024-03000-7 - 发表时间:
2025-01-10 - 期刊:
- 影响因子:1.700
- 作者:
Yelda Semizer;Dian Yu;Qianqian Wan;Benjamin Balas;Ruth Rosenholtz - 通讯作者:
Ruth Rosenholtz
Can reduced contour detection performance in the periphery be explained by larger integration fields?
- DOI:
10.1186/1471-2202-10-s1-p360 - 发表时间:
2009-07-13 - 期刊:
- 影响因子:2.300
- 作者:
Nadja Schinkel-Bielefeld;Udo A Ernst;Klaus R Pawelzik;Simon D Neitzel;Sunita Mandon;Andreas A Kreiter;Ruth Rosenholtz - 通讯作者:
Ruth Rosenholtz
Ruth Rosenholtz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Rosenholtz', 18)}}的其他基金
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 68.17万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 68.17万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 68.17万 - 项目类别:
CRCNS US-German Research Proposal: Combining computational modeling and artificial intelligence to understand receptor function in physiology and disease
CRCNS 美德研究提案:结合计算模型和人工智能来了解生理学和疾病中的受体功能
- 批准号:
2113030 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
Standard Grant
Collaborative research: IRES Track I: US-German Research on Human-Automation Interaction for the Future of Work
合作研究:IRES 第一轨:美德关于未来工作的人机交互研究
- 批准号:
2153695 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Computational modeling and real-time visualization of microscale-forces-induced neurovascular unit permeability
CRCNS 美德研究提案:微尺度力诱导的神经血管单元渗透性的计算建模和实时可视化
- 批准号:
2207804 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10688109 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10612154 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10610594 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别:
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10708986 - 财政年份:2022
- 资助金额:
$ 68.17万 - 项目类别: