CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
基本信息
- 批准号:10612154
- 负责人:
- 金额:$ 23.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressBehaviorBehavioralBenchmarkingBirdsBrainCategoriesCellsClinicalCodeCognitiveCollaborationsComputer ModelsDecision MakingDimensionsDiseaseDoctor of PhilosophyDorsalEvaluationExhibitsFunctional Magnetic Resonance ImagingGerman populationGermanyGoalsGrainHumanImpairmentIndividualInstitutesKnowledgeLearningMedialModelingNational Institute of Mental HealthNeuronsNeurosciencesNew YorkPatternPersonal SatisfactionPersonalityPersonality DisordersPopulationPrefrontal CortexPsyche structurePsychiatryPsychologyResearchResearch Domain CriteriaResearch ProposalsShapesSideSignal TransductionSiteSocial EnvironmentSocial FunctioningSocial InteractionSpecific qualifier valueStereotypingStructureSymptomsSystemTestingTo specifyUncertaintyUniversitiesWashingtonautism spectrum disorderbaseclinical practiceclinically relevantcognitive rigiditycomputational neurosciencecomputer frameworkexpectationexperimental studyflexibilityimprovedindividuals with autism spectrum disorderinformation organizationinterestlearning strategymedical schoolsmental statemid-career facultyneuropsychiatric disordernovelpreferenceprofessorprogramsrecruitrelating to nervous systemskillssocialsocial deficitssocial learningsocial neurosciencesocial spacesymptomatology
项目摘要
PROJECT DESCRIPTION
US-German Research Proposal for Collaboration in Computational Neuroscience:
Efficient representations of social knowledge structures for learning from a computational, neural
and psychiatric perspective (RepSocKnow)
US-side PI: Prof. Gabriela Rosenblau, Ph.D., Assistant Professor, Department of Psychology, The George
Washington University, 2115 G Street NW, Washington, DC 20052
German-side PI: Prof. Christoph W. Korn, Ph.D., Assistant Professor & PI Emmy-Noether Group, Section
Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Vossstraße 4, 69115
Heidelberg, Germany
Consultant 1: Prof. Daniela Schiller, Ph.D., Associate Professor, Department of Psychiatry, Department
of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison
Ave, New York 10029, NY
Consultant 2: Jan Gläscher, Ph.D., PI Bernstein Research Group, Institute for Systems Neuroscience,
University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
1. Aims and hypotheses
This is a resubmission of our last year's CRCNS proposal, which received good and very good scores from
reviewers. Reviewers were excited about the general neuro-computational approach that builds on the
complementary skills of the PIs. In this revision, we address the reviewers' requests for clearer descriptions
of the planed experiments and analyses. Importantly, our new proposal has direct relevance for clinical
practice. By leveraging ideas from computational psychiatry [1–4] and from the Research Domain Criteria
(RDoC; e.g., [5, 6]), we aim to apply our neuro-computational approach to improve the understanding of
core social deficits shared by many pervasive neuro-psychiatric disorders. The general goal of this proposal
is to establish comprehensive—and clinically relevant—neuro-computational models of aberrant learning
in social contexts via behavioral and functional magnetic resonance imaging (fMRI) experiments.
Learning about others is crucial for successful social interactions [7]. Social interactions strongly
predict wellbeing [8]. Different types of impairments in social functioning accompany a variety of clinical
conditions and constitute core symptoms of Autism Spectrum Disorders (ASD) [9–11] and Personality
Disorders with a Borderline pattern qualifier (BPD) [12–16]. We harness our neuro-computational approach
to investigate how social knowledge structures shape—and in turn are shaped by—learning about others.
The mechanisms underlying knowledge representations and learning that we propose in our computational
modeling approach are not “social” per se and we deem it a strength that they can be applied to learning
across various (non-)social domains.
Here, we focus on social learning to specify commonalities and differences between healthy
individuals and individuals with marked social deficits associated with ASD or BPD. While these two
clinical groups probably both employ overly rigid social knowledge structures, they exhibit different types
of malfunctioning: ASD are characterized by under-mentalizing, i.e., insufficient inferences about mental
states of others—possibly due to poor or unspecific social knowledge[17–19]. In contrast, BPD show over-
mentalizing and overly negative interpretations of others' personality or intentions[12, 13]. Our novel
neuro-computational framework can improve the understanding social malfunctioning along dimensional
and categorical psychiatric criteria of ASD and BPD.
We aim to test and refine computational models that formalize adequate strategies for acquiring
and employing social knowledge structures during learning. Our models offer normative perspectives on
social learning by specifying how ideal agents could learn in our controlled but ecologically valid tasks.
Thereby, we can quantify how much humans—particularly clinical populations characterized by pervasive
social deficits—deviate from computationally specified “optimal” benchmark strategies. In conjunction,
this project aims to reveal the neural computations underlying the representation of social knowledge
structures and their flexible deployment during learning. The project addresses three specific aims:
项目描述
美国-德国计算神经科学合作研究提案:
社会知识结构的有效表示,用于从计算神经网络中学习
和精神病学观点(RepSocKnow)
美方主要研究者:Prof. Gabriela Rosenblau,Ph.D.,助理教授,心理学系,乔治
华盛顿大学,2115 G Street NW,华盛顿特区20052
德方主要研究者:Christoph W.科恩博士,助理教授& PI Emmy-Noether集团,科
社会神经科学,普通精神病学系,海德堡大学,Vossstraße 4,69115
德国海德堡
顾问1:Daniela Schiller教授,博士,精神病学系副教授
弗里德曼脑研究所,西奈山伊坎医学院,1470麦迪逊
Ave,纽约10029,NY
顾问2:Jan Gläscher博士,PI伯恩斯坦研究小组,系统神经科学研究所,
Hamburg-Eppendorf大学医学中心,Martinistrasse 52,20246 Hamburg,德国
1.目标和假设
这是我们去年的CRCNS提案的重新提交,该提案获得了良好和非常好的分数,
审稿人。评论家们对建立在神经网络基础上的一般神经计算方法感到兴奋。
PI的补充技能。在这次修订中,我们解决了审稿人要求更清晰描述的问题
计划的实验和分析。重要的是,我们的新提案与临床
实践通过利用计算精神病学[1-4]和研究领域标准的思想,
(RDoC;例如,[5,6]),我们的目标是应用我们的神经计算方法来提高对
许多普遍性神经精神障碍所共有的核心社会缺陷。本提案的总体目标是
是建立全面的和临床相关的异常学习的神经计算模型
通过行为和功能性磁共振成像(fMRI)实验。
了解他人对于成功的社交互动至关重要[7]。强烈的社会互动
[2018 - 08 - 18]不同类型的社会功能障碍伴随着各种临床症状。
自闭症谱系障碍(ASD)的条件和构成核心症状[9-11]和人格
具有边界模式限定符(BPD)的疾病[12-16]。我们利用我们的神经计算方法
研究社会知识结构是如何形成的,反过来又是如何通过学习他人而形成的。
我们在计算中提出的知识表示和学习的基础机制
建模方法本身不是“社会”的,我们认为这是一个优势,他们可以应用于学习
在各种(非)社会领域。
在这里,我们专注于社会学习,以指定健康和健康之间的共性和差异。
个体和具有与ASD或BPD相关的显著社会缺陷的个体。虽然这两
临床组可能都采用过于僵化的社会知识结构,他们表现出不同的类型,
ASD的特点是低估,即,关于心理的推论不足
他人的状态-可能是由于穷人或不具体的社会知识[17-19]。相比之下,BPD显示超过-
对他人的个性或意图进行心理化和过度负面的解释[12,13]。我们的新型
神经计算框架可以改善对社会功能障碍的理解,沿着维度
以及ASD和BPD的精神病分类标准。
我们的目标是测试和完善计算模型,形式化适当的策略,以获取
在学习过程中运用社会知识结构。我们的模型提供了规范的观点,
社会学习通过指定理想的代理如何在我们控制但生态有效的任务中学习。
因此,我们可以量化有多少人-特别是临床人群的特点是普遍存在的
社会赤字-偏离计算指定“最佳”基准策略。同时,
该项目旨在揭示社会知识表征背后的神经计算
在学习过程中灵活运用。该项目有三个具体目标:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Rosenblau其他文献
Gabriela Rosenblau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Rosenblau', 18)}}的其他基金
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10688109 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Research Grant