OP: Quantum Phases and Dynamics of Bose-Einstein Condensates with Artificial Gauge Fields

OP:人工规范场玻色-爱因斯坦凝聚体的量子相和动力学

基本信息

  • 批准号:
    1607495
  • 负责人:
  • 金额:
    $ 58.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project investigates fundamental laws of nature predicted by quantum mechanics, one of the cornerstones of modern physics. The predictions of quantum mechanics are very counterintuitive and unfamiliar compared to the experiences of everyday life, but they play a dominant role when spatial dimensions get small, e.g. at length scales reached using modern nanofabrication or computer chip fabrication techniques, and on atomic scales. Conducting experiments on the nanoscopic length scale poses severe technical difficulties, but an alternative approach exists: the same laws of quantum mechanics can also be studied when a gas of atoms is cooled down to temperatures near absolute zero. At these temperatures, fundamental quantum lengths become larger and details about these ultracold quantum gases can be imaged in a custom microscope, allowing their properties to be examined in very flexible ways using tools from the realm of atomic physics. The particular predictions investigated in this project concern a property called spin-orbit coupling. In the vast majority of existing electronic devices, the transport of electrically charged particles (i.e., electrons) is exploited to perform a device function. However, electrons have an additional property called spin, which can be pictured as a fast spinning motion akin to that of a spinning top. The orientation of this rotation can also be used to perform a device function, leading to "spintronic" devices. Spin-orbit coupling denotes an interplay between this spinning motion and the linear flow of particles that constitutes a conventional current. It is the basic building block of many proposed future devices and of advanced materials with exotic properties. The underlying physics are rather complex, and the experiments of this project provide an important test bed with which new concepts are explored. Over the recent years, immersing ultracold atoms into suitably tailored laser beams has emerged as a powerful tool to investigate quantum dynamics. The different hyperfine states coupled by the lasers can be considered orientations of a "pseudo" spin, so that absorption and emission of a photon constitutes a spin flip. At the same time, due to momentum conservation, the atom's motion is changed when a photon is absorbed or emitted. As a result, the pseudospin and the motion of an atom become coupled in a laser-driven transition, in analogy to spin-orbit coupling known from condensed matter physics. A suitable dressing of atoms with laser light can also lead to artificial gauge fields and artificial magnetic and electric fields, so that charged-particle behavior can be investigated with neutral atomic quantum gases. Furthermore, the dispersion relation of the atoms can be modified to exhibit intriguing double-well structures showing roton-like minima. Over the previous grant period, such techniques have been applied to a rubidium Bose-Einstein condensate to investigate quantum phases and quantum dynamics in spin-orbit coupled condensates. Capitalizing on the insights gained and technological developments performed in the previous grant period, this project will explore new frontiers that challenge current theoretical descriptions. Aspects include novel quantum phases induced by spin-orbit coupling and by the interplay with optical lattices, as well as the dynamics of solitons in a spin-orbit coupled environment and topological structures in higher dimensions.
该项目研究了现代物理学的基石之一——量子力学所预测的自然基本定律。与日常生活的经验相比,量子力学的预测是非常违反直觉和不熟悉的,但当空间维度变小时,它们发挥了主导作用,例如在使用现代纳米制造或计算机芯片制造技术达到的长度尺度上,以及在原子尺度上。在纳米尺度上进行实验存在严重的技术困难,但存在另一种方法:当原子气体冷却到接近绝对零度的温度时,也可以研究相同的量子力学定律。在这些温度下,基本量子长度变得更大,这些超冷量子气体的细节可以在定制的显微镜中成像,允许使用原子物理学领域的工具以非常灵活的方式检查它们的性质。在这个项目中研究的特殊预测涉及一种称为自旋轨道耦合的特性。在绝大多数现有的电子设备中,利用带电粒子(即电子)的传输来执行设备功能。然而,电子有一个额外的特性叫做自旋,它可以被描绘成一种类似于旋转陀螺的快速自旋运动。这种旋转的方向也可以用来执行器件功能,导致“自旋电子”器件。自旋轨道耦合是指自旋运动与构成常规电流的粒子线性流动之间的相互作用。它是许多提出的未来设备和具有奇异特性的先进材料的基本组成部分。基础物理相当复杂,本项目的实验为探索新概念提供了一个重要的试验台。近年来,将超冷原子浸入适当定制的激光束中已成为研究量子动力学的有力工具。激光耦合的不同超精细态可以被认为是“伪”自旋的方向,因此光子的吸收和发射构成了自旋翻转。同时,由于动量守恒,当光子被吸收或发射时,原子的运动就会改变。结果,赝自旋和原子的运动在激光驱动的跃迁中耦合,类似于凝聚态物理中已知的自旋-轨道耦合。适当地用激光修饰原子还可以产生人工规范场和人工磁场和电场,从而可以用中性原子量子气体研究带电粒子的行为。此外,原子的色散关系可以被修改,以表现出有趣的双阱结构,显示出类似旋转的最小值。在之前的资助期内,这些技术已经应用于铷玻色-爱因斯坦凝聚体,以研究自旋轨道耦合凝聚体中的量子相和量子动力学。利用在上一个资助期内获得的见解和技术发展,该项目将探索挑战当前理论描述的新领域。这些方面包括自旋轨道耦合和与光学晶格的相互作用引起的新量子相,以及自旋轨道耦合环境中孤子的动力学和高维拓扑结构。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability in turbulence: The interplay between shocks and vorticity in a superfluid with higher-order dispersion
  • DOI:
    10.1103/physreva.102.053310
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Mossman;E. Delikatny;M. Forbes;P. Engels
  • 通讯作者:
    M. Mossman;E. Delikatny;M. Forbes;P. Engels
Experimental realization of a non-magnetic one-way spin switch
  • DOI:
    10.1038/s41467-019-11210-z
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    M. Mossman;Junpeng Hou;Xiwang Luo;Chuanwei Zhang;P. Engels
  • 通讯作者:
    M. Mossman;Junpeng Hou;Xiwang Luo;Chuanwei Zhang;P. Engels
Observation and analysis of multiple dark-antidark solitons in two-component Bose-Einstein condensates
  • DOI:
    10.1103/physreva.102.023301
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    G. Katsimiga;S. Mistakidis;T. Bersano;M. Ome;S. Mossman;K. Mukherjee;K. Mukherjee;P. Schmelcher-P.-Schmel
  • 通讯作者:
    G. Katsimiga;S. Mistakidis;T. Bersano;M. Ome;S. Mossman;K. Mukherjee;K. Mukherjee;P. Schmelcher-P.-Schmel
Rabi oscillations and Ramsey-type pulses in ultracold bosons: Role of interactions
超冷玻色子中的拉比振荡和拉姆齐型脉冲:相互作用的作用
  • DOI:
    10.1103/physreva.101.063620
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Guan, Q.;Bersano, T. M.;Mossman, S.;Engels, P.;Blume, D.
  • 通讯作者:
    Blume, D.
Experimental realization of a long-lived striped Bose-Einstein condensate induced by momentum-space hopping
动量空间跳跃引起的长寿命条纹玻色-爱因斯坦凝聚态的实验实现
  • DOI:
    10.1103/physreva.99.051602
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bersano, Thomas M.;Hou, Junpeng;Mossman, Sean;Gokhroo, Vandna;Luo, Xi-Wang;Sun, Kuei;Zhang, Chuanwei;Engels, Peter
  • 通讯作者:
    Engels, Peter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Engels其他文献

Distribution of 5-HT4 receptor mRNA in the rat brain

Peter Engels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Engels', 18)}}的其他基金

Quantum State Engineering with Bose-Einstein Condensates: Dressed-State and Hydrodynamic Approaches
玻色-爱因斯坦凝聚体的量子态工程:修饰态和流体动力学方法
  • 批准号:
    2207588
  • 财政年份:
    2022
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Quantum Phases, Interactions and Topology of Dressed BECs
修饰 BEC 的量子相、相互作用和拓扑
  • 批准号:
    1912540
  • 财政年份:
    2019
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Quantum Hydrodynamics with Multicomponent and Dispersion-Managed Degenerate Gases
多组分和分散管理简并气体的量子流体动力学
  • 批准号:
    1306662
  • 财政年份:
    2013
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics and Disorder Effects in Bose-Einstein Condensates, Degenerate Fermi Gases and Mixtures
玻色-爱因斯坦凝聚体、简并费米气体和混合物中的非线性动力学和无序效应
  • 批准号:
    0969867
  • 财政年份:
    2010
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Nonlinear quantum hydrodynamics in ultracold Bose and Fermi gases
超冷玻色和费米气体中的非线性量子流体动力学
  • 批准号:
    0652976
  • 财政年份:
    2007
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
  • 批准号:
    DP240102006
  • 财政年份:
    2024
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Discovery Projects
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
  • 批准号:
    23H01092
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Active Feedback to Control Dynamic Quantum Phases
职业:主动反馈控制动态量子相
  • 批准号:
    2238895
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
  • 批准号:
    2409357
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Standard Grant
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
  • 批准号:
    23KJ0801
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Strange metals and the phases of quantum materials
奇异金属和量子材料的相
  • 批准号:
    2245246
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
elucidation of magnetic field induced quantum phases and development of kagome-lattice antiferromagnets in doubly ordered pyrochlore
双序烧绿石中磁场诱导量子相的阐明和戈薇晶格反铁磁体的开发
  • 批准号:
    23H01123
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MACON-QC: Many-Body Phases In Continuous-Time Quantum Computation
MACON-QC:连续时间量子计算中的多体相
  • 批准号:
    EP/Y004590/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Research Grant
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2312742
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Continuing Grant
Dynamical topological phases in monitored quantum circuits
受监控量子电路中的动态拓扑相
  • 批准号:
    2892177
  • 财政年份:
    2023
  • 资助金额:
    $ 58.66万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了