CRCNS: Collaborative Research: A Common Model of the Functional Architecture of Human Cortex
CRCNS:协作研究:人类皮质功能架构的通用模型
基本信息
- 批准号:1607801
- 负责人:
- 金额:$ 30.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human brain is perhaps the most complex known object and is the vessel that contains our thoughts, experiences, knowledge, and, collectively, our culture. Although brains have similar anatomical components, differences in size and shape and in fine structure make it difficult to discern how different brains can contain similar thoughts and knowledge that can be shared and communicated. A major challenge for brain science is to build a common model of the functional architecture of the brain that captures these similarities that are shared across brains at a fine scale. The research in this project is aimed at developing a computational basis for such a common model. The model is based on measurement of patterns of brain activity using functional magnetic resonance imaging (fMRI) while participants engage in everyday cognitive activities like watching a movie, listening to a story, or free-ranging thought while at rest. The model aligns the functional architecture of the brain at multiple scales, from fine to coarse, and captures far more shared structure than is possible with other methods that are based on alignment of brain anatomy. This model will provide infrastructure that can be used by scientists who image the brain in order to study a wide range of brain functions, from perception to social interaction, emotion, and decision making, allowing them to describe the mechanisms underlying these functions in a format that can be communicated across laboratories with a level of detail and precision that will accelerate discovery and application.Alignment of brain imaging data has relied on anatomical features that have a variable correspondence to the underlying functional architecture. Moreover, such alignment methods do not capture the fine structure of brain activity patterns that can be decoded using modern pattern analytic methods. The research in this project is based on aligning representational spaces across brains, rather than anatomical topographies, and will identify the boundaries between patches of cortex with distinct representational spaces. This innovation affords greatly superior alignment of functional architecture across brains and the development of a common model of the human brain. The research will develop computational algorithms for transforming the idiosyncratic organization of individual brains into the common representational spaces and for fine-tuning the description of individual brains by projecting, or shrink-wrapping, the common model based on a large number of individuals onto that individual brain. The development of these computational algorithms and the model will be integral to the training of graduate students and postdoctoral fellows. They will be made available as free and open-source software, with large shared data sets, to be shared and used freely by brain imaging scientists around the world, providing essential research infrastructure to maximize the impact and benefit of this research project.
人脑可能是已知的最复杂的物体,是包含我们的思想、经验、知识以及我们的文化的容器。尽管大脑有相似的解剖成分,但大小、形状和精细结构的差异使得人们很难分辨不同的大脑如何包含相似的思想和知识,这些想法和知识可以共享和交流。脑科学面临的一个主要挑战是建立一个大脑功能结构的通用模型,以捕捉这些在精细尺度上在大脑中共享的相似性。这个项目的研究目的是为这样一个共同的模型开发一个计算基础。该模型基于使用功能磁共振成像(FMRI)测量大脑活动模式的基础上,参与者在休息时参与日常认知活动,如看电影、听故事或自由思考。该模型在多个尺度上对齐大脑的功能架构,从精细到粗略,并捕获了比其他基于大脑解剖学对齐的方法可能捕捉到的更多的共享结构。该模型将提供可供成像大脑的科学家使用的基础设施,以研究从感知到社会互动、情绪和决策的广泛的大脑功能,使他们能够以一种可以跨实验室以详细和精确的形式描述这些功能背后的机制,从而加速发现和应用。大脑成像数据的对齐依赖于与潜在功能架构具有可变对应的解剖特征。此外,这种比对方法没有捕捉到可以使用现代模式分析方法破译的大脑活动模式的精细结构。这个项目的研究是基于对齐整个大脑的表征空间,而不是解剖结构,并将确定具有不同表征空间的皮质斑块之间的边界。这一创新为整个大脑的功能架构提供了极大的优势,并开发了一个人类大脑的通用模型。这项研究将开发计算算法,将个体大脑的特殊组织转换为共同的表征空间,并通过将基于大量个体的共同模型投影或收缩包装到该个体大脑上来微调对个体大脑的描述。这些计算算法和模型的开发将是培养研究生和博士后研究员不可或缺的一部分。它们将以免费和开源软件的形式提供,并带有大量共享数据集,供世界各地的脑成像科学家自由共享和使用,提供必要的研究基础设施,以最大限度地发挥这一研究项目的影响和好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ramadge其他文献
Peter Ramadge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ramadge', 18)}}的其他基金
MRI Acquisition of a High Performance Large Memory Computing Cluster for Large Scale Data-Driven Research
用于大规模数据驱动研究的高性能大内存计算集群的 MRI 采集
- 批准号:
1919452 - 财政年份:2019
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
CIF: Small: Fast Stagewise Learning of Sparse Hierarchical Data Representations
CIF:小型:稀疏分层数据表示的快速分阶段学习
- 批准号:
1116208 - 财政年份:2011
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
U.S.-German Collaboration: Building common high-dimensional models of neural representational spaces
美德合作:构建神经表征空间的通用高维模型
- 批准号:
1129855 - 财政年份:2011
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
Analysis and Control of Discrete Event Systems
离散事件系统的分析与控制
- 批准号:
9022634 - 财政年份:1991
- 资助金额:
$ 30.73万 - 项目类别:
Continuing Grant
Modeling and Control of Discrete Event Systems
离散事件系统的建模和控制
- 批准号:
8715217 - 财政年份:1987
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
Research Initiation: Supervisory Control
研究启动:监督控制
- 批准号:
8504584 - 财政年份:1985
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Continuing Grant
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207747 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207727 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207700 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10610594 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207647 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10708986 - 财政年份:2022
- 资助金额:
$ 30.73万 - 项目类别:
CRCNS Research Project: Collaborative Research: Experimental, Numerical, and Robotic Study of the Role of Dynamic Load Sensing in Legged Locomotion
CRCNS 研究项目:协作研究:动态负载传感在腿式运动中的作用的实验、数值和机器人研究
- 批准号:
2113028 - 财政年份:2021
- 资助金额:
$ 30.73万 - 项目类别:
Continuing Grant