RUI: Neutrino Experiments at Fermilab

RUI:费米实验室的中微子实验

基本信息

  • 批准号:
    1608427
  • 负责人:
  • 金额:
    $ 14.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

One of the major intellectual achievements of the 20th century was the development of the Standard Model (SM) of particle physics. This model succeeded in classifying all of the elementary particles known at the time into a hierarchy of groups having similar quantum properties. The validity of this model to date was recently confirmed by the discovery of the Higgs boson at the Large Hadron Collider at CERN. However, the Standard Model as it currently exists leaves open many questions about the universe, including such fundamental questions as to why the Higgs mass has the value it has and why there is no antimatter in the universe. A primary area to search for answers to these and other open questions about the universe, how it came to be and why it is the way it is, is to focus on a study of the properties of neutrinos and to use what we know and can learn about neutrinos as probes of science beyond the Standard Model. Neutrinos are those elementary particles that interact with practically nothing else in the universe. They have no electric charge and were once thought to be massless. Like other elementary particles, they were believed to have an antimatter counterpart, the antineutrino. Moreover, the Standard Model predicted that there were actually three different kinds of neutrinos that were distinguishable through the different interactions that they did undergo whenever there was an interaction. But recent measurements have totally changed our picture of neutrinos. We now know that neutrinos do have a mass and because they do, they can actually change from one type to another. Detailed measurements of these changes, along with other current neutrino experiments, form one of the most promising ways to probe for new physics Beyond the Standard Model (BSM), and are the subject of this investigation. This research will involve the work of undergraduate students at an RUI. This award supports work, using the neutrino beam at the Fermi National Accelerator Laboratory (FNAL), on three related neutrino experiments: MINERvA, Nova and MINOS+, all measuring neutrino oscillations: muon neutrino to electron neutrino transitions. To correctly measure these transitions, precise knowledge of neutrino interactions is required. This award will be used to measure (using the MINERvA detector) these interactions across a wide energy range available at FNAL. This will improve our knowledge of the neutrino flux, useful for future Short Baseline (detector near the source at FNAL) and Long Baseline (detector hundreds of kilometers away) experiments as well as the current Nova experiment. The work on the MINOS+ experiment will help map out the shape of the energy dependence of the neutrino oscillation probability, which could reveal new anomalies in the neutrino sector. A number of BSM proposed phenomena, from sterile neutrinos to extra dimensions, can cause measurable deviations in the neutrino oscillation probability in the 4-10GeV range.A special contribution of this award and an exciting broader impact of this research program is the development and implementation of 3D visualization tools to guide the physics analyses of the experiments and to render visible to students and the public the nature of neutrino interactions as recorded and studied by scientists.
20世纪最重要的智力成就之一是粒子物理学标准模型(SM)的发展。这个模型成功地将当时已知的所有基本粒子划分为具有相似量子特性的等级。到目前为止,这个模型的有效性最近被欧洲核子研究中心大型强子对撞机发现的希格斯玻色子所证实。然而,目前存在的标准模型留下了许多关于宇宙的问题,包括为什么希格斯质量具有它所具有的价值以及为什么宇宙中没有反物质等基本问题。寻找这些和其他关于宇宙的开放性问题的答案,宇宙是如何形成的,为什么是这样的,一个主要的领域是专注于中微子的特性研究,并利用我们所知道的和可以了解的中微子作为标准模型之外的科学探测器。中微子是一种基本粒子,它几乎不与宇宙中任何其他物质相互作用。它们不带电荷,一度被认为是无质量的。像其他基本粒子一样,它们被认为有一种反物质,即反中微子。此外,标准模型预测,实际上有三种不同的中微子,它们在相互作用时所经历的不同相互作用可以区分开来。但是最近的测量完全改变了我们对中微子的认识。我们现在知道中微子确实有质量,正因为如此,它们实际上可以从一种类型转变为另一种类型。对这些变化的详细测量,以及其他当前的中微子实验,构成了探索超越标准模型(BSM)的新物理的最有希望的方法之一,也是本次研究的主题。这项研究将涉及到大学本科生的工作。该奖项支持使用费米国家加速器实验室(FNAL)的中微子束进行三个相关的中微子实验:MINERvA, Nova和MINOS+,所有这些实验都测量中微子振荡:介子中微子到电子中微子的转变。为了正确测量这些跃迁,需要对中微子相互作用有精确的了解。该合同将用于测量(使用MINERvA探测器)在FNAL可用的广泛能量范围内的这些相互作用。这将提高我们对中微子通量的认识,对未来的短基线(FNAL源附近的探测器)和长基线(数百公里外的探测器)实验以及目前的新星实验都很有用。MINOS+实验的工作将有助于绘制出中微子振荡概率的能量依赖形状,这可能会揭示中微子领域的新异常。BSM提出的许多现象,从惰性中微子到额外维度,都可能导致4-10GeV范围内的中微子振荡概率的可测量偏差。这个奖项的一个特别贡献和这个研究项目的一个令人兴奋的更广泛的影响是3D可视化工具的开发和实施,以指导实验的物理分析,并向学生和公众展示科学家记录和研究的中微子相互作用的本质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Tagg其他文献

Nathaniel Tagg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Tagg', 18)}}的其他基金

RUI: Neutrino Oscillations with DUNE and MicroBooNE
RUI:使用 DUNE 和 MicroBooNE 进行中微子振荡
  • 批准号:
    2011333
  • 财政年份:
    2020
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Standard Grant
RUI: Neutrino Experiments at Fermilab
RUI:费米实验室的中微子实验
  • 批准号:
    1303734
  • 财政年份:
    2013
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
RUI: Neutrino Experiments with the NuMI Beam
RUI:使用 NuMI 光束进行中微子实验
  • 批准号:
    0855429
  • 财政年份:
    2009
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant

相似海外基金

Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/2
  • 财政年份:
    2024
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Fellowship
Study of CP symmetry violation in accelerator neutrino oscillation experiments
加速器中微子振荡实验中CP对称性破坏的研究
  • 批准号:
    23KF0234
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SENSE - Search for new physics and technological advancements from neutrino experiments at the high intensity frontier.
SENSE - 从高强度前沿的中微子实验中寻找新的物理和技术进步。
  • 批准号:
    EP/X039552/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Research Grant
Ultimate neutrino flux optimisation and design of next-generation neutrino experiments in nuSTORM
nuSTORM 中的最终中微子通量优化和下一代中微子实验设计
  • 批准号:
    2884300
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Studentship
Understanding neutrino interactions with argon using Fermilab's Short Baseline Neutrino experiments
使用费米实验室的短基线中微子实验了解中微子与氩的相互作用
  • 批准号:
    2878958
  • 财政年份:
    2023
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Studentship
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/1
  • 财政年份:
    2022
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Fellowship
CAREER: Enhancing Future Liquid Argon Neutrino Experiments With Xenon
职业:利用氙加强未来液态氩中微子实验
  • 批准号:
    1945050
  • 财政年份:
    2020
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
RUI: Neutrino Scattering Experiments at the Spallation Neutron Source
RUI:散裂中子源的中微子散射实验
  • 批准号:
    2013205
  • 财政年份:
    2020
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
Leveraging Novel Complementary Variables to Boost the Sensitivity of Ultra High Energy Neutrino Experiments
利用新颖的互补变量提高超高能中微子实验的灵敏度
  • 批准号:
    1806923
  • 财政年份:
    2018
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Continuing Grant
Working on the SuperK/HyperK neutrino experiments
从事 SuperK/HyperK 中微子实验
  • 批准号:
    2113346
  • 财政年份:
    2018
  • 资助金额:
    $ 14.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了