CAREER: Enhancing Future Liquid Argon Neutrino Experiments With Xenon
职业:利用氙加强未来液态氩中微子实验
基本信息
- 批准号:1945050
- 负责人:
- 金额:$ 54.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Standard Model of particle physics was a formative intellectual development of 20th century physics. While the discovery of the Higgs mechanism in 2012 was a crowning achievement for the Standard Model, many mysteries remain, including the role of the elusive neutrino. Neutrinos are elementary particles that rarely interact with ordinary matter. The Standard Model predicts three types of massless neutrinos. However, experimentally, we know that neutrinos do have very small masses, and yet they permeate the universe. Because they have mass, they can change from one type to another. Measuring properties of these changes, and comparing them to theoretical predictions, provides a promising pathway to discover how neutrinos shape our universe. To that end, the neutrino community is embarking on a challenging quest to complete the picture of neutrino physics through the Deep Underground Neutrino Experiment (DUNE), which will be a massive, 40,000-ton instrument optimized to detect neutrino interactions about a mile underground at Sanford Lab in South Dakota. This facility, being built during the next 10 years, will observe interactions of neutrinos produced at Fermilab and traveling 800 miles to DUNE.Due to its large volume, the DUNE experiment offers a unique opportunity for a rich astroparticle and exotic physics search program, including observations of low-energy astrophysical neutrinos, e.g. from supernova core-collapse, thus lending itself to multi-messenger astrophysics, and searches for other rare processes, for example proton decay. If observed, these signatures would have profound implications for particle physics, astrophysics, and cosmology. The rarity of these signals requires continuous, high-resolution readout using electronic and optical techniques and processing of Time Projection Chamber (TPC) data from the entire DUNE detector.The emphasis of this CAREER award is to improve the light collection and optical triggering of DUNE by investigating the co-doping of the Liquid Argon TPCs with very-low concentrations of Xenon, whose introduction into the liquid has the potential to improve significantly the optical performance of the DUNE detectors beyond what is possible with Liquid Argon alone. Xenon’s desirable property of longer fluorescence wavelength combined with a significantly foreshortened time scale of scintillation light emission from the liquid medium holds promise to substantially improve the overall level and uniformity of light collection from the DUNE TPCs as well as reduce the effects of radiological backgrounds. The technique and its development are to be extensively investigated and assessed both in a compact laboratory test facility at Syracuse University as well as in the 700-ton Prototype Liquid Argon TPC at CERN called ProtoDUNE-SP. The results of these systematic studies will inform further DUNE program development and refinement, as well as provide input into simulations of expected performance improvements for the DUNE TPCs.The broader impacts of this program will leverage experience from the frontier particle physics experiment DUNE to provide educational opportunities at the high school level and inspire the next generation toward careers in scientific and technological fields. Activities will focus on developing a neutrino oscillation Masterclass program of lectures, novel hands-on demonstrations, and activities working with simulated neutrino interactions provided by the DUNE collaboration, with evaluation and feedback provided through the Syracuse University School of EducationThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
粒子物理学的标准模型是世纪物理学的一个重要发展。虽然2012年希格斯机制的发现是标准模型的最高成就,但许多谜团仍然存在,包括难以捉摸的中微子的作用。中微子是基本粒子,很少与普通物质相互作用。标准模型预测了三种类型的无质量中微子。然而,从实验上我们知道中微子的质量确实很小,但它们却渗透到宇宙中。因为它们有质量,它们可以从一种类型变成另一种类型。测量这些变化的性质,并将它们与理论预测进行比较,为发现中微子如何塑造我们的宇宙提供了一条有希望的途径。为此,中微子社区正在进行一项具有挑战性的探索,通过深层地下中微子实验(DUNE)完成中微子物理学的图景,这将是一个巨大的,40,000吨的仪器,用于探测南达科他州桑福德实验室地下一英里处的中微子相互作用。该设施将在未来10年内建成,将观测费米实验室产生的中微子与800英里外的DUNE之间的相互作用。由于其体积庞大,DUNE实验为丰富的天体粒子和奇异物理搜索计划提供了独特的机会,包括观测低能天体物理中微子,例如来自超新星核心坍缩的中微子,从而为多信使天体物理学提供了机会。并寻找其他罕见的过程,例如质子衰变。 如果被观测到,这些特征将对粒子物理学、天体物理学和宇宙学产生深远的影响。这些信号的稀有性要求使用电子和光学技术进行连续、高分辨率的读出,并处理来自整个DUNE探测器的时间投影室(TPC)数据。该CAREER奖项的重点是通过研究液氩TPC与极低浓度氙气的共掺杂,其引入液体中具有显著改善DUNE检测器的光学性能的潜力,超过了单独使用液体氩的可能性。 氙的较长荧光波长的期望特性与来自液体介质的闪烁光发射的显著缩短的时间尺度相结合,有望大幅提高来自DUNE TPC的光收集的总体水平和均匀性,以及减少放射性背景的影响。 该技术及其发展将在锡拉丘兹大学的紧凑型实验室测试设施以及欧洲核子研究中心的700吨原型液氩TPC(称为ProtoDUNE-SP)中进行广泛的研究和评估。这些系统研究的结果将为进一步的DUNE计划开发和改进提供信息,该计划的广泛影响将利用前沿粒子物理实验DUNE的经验,教育机会,并激励下一代走向科学和技术领域的职业生涯。活动将集中在开发中微子振荡大师班课程的讲座,新颖的动手示范,并与DUNE合作提供的模拟中微子相互作用的活动,通过锡拉丘兹大学教育学院提供的评估和反馈,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denver Whittington其他文献
Photon detection system designs for the Deep Underground Neutrino Experiment
地下深处中微子实验的光子探测系统设计
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Denver Whittington - 通讯作者:
Denver Whittington
Denver Whittington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Collaborative Research:FW-HTF-P: The Future of Virtual Teams: Enhancing Collaborative Creativity and Socio-cognitive wellbeing in Video-based Teams
协作研究:FW-HTF-P:虚拟团队的未来:增强基于视频的团队的协作创造力和社会认知福祉
- 批准号:
2222764 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
BRIDGES 5.0 (Bridging Risks to an Inclusive Digital and Green future by Enhancing workforce Skills for industry 5.0)
BRIDGES 5.0(通过增强工业 5.0 的劳动力技能,弥合风险,实现包容性数字和绿色未来)
- 批准号:
10069435 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
EU-Funded
Collaborative Research:FW-HTF-P: The Future of Virtual Teams: Enhancing Collaborative Creativity and Socio-cognitive wellbeing in Video-based Teams
协作研究:FW-HTF-P:虚拟团队的未来:增强基于视频的团队的协作创造力和社会认知福祉
- 批准号:
2222795 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Glacier Extremes: The Role of Glacier Snow Albedo Feedbacks From Wildfires and Heatwaves in Enhancing Present and Future Mass Loss in Alaska
冰川极端事件:野火和热浪的冰川雪反照率反馈在加剧阿拉斯加当前和未来质量损失中的作用
- 批准号:
2214509 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Enhancing Resiliency and Increasing Equity in the Transition to a Sustainable Energy Future
在向可持续能源未来转型的过程中增强弹性并增加公平性
- 批准号:
2021693 - 财政年份:2020
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
FW-HTF-RM: Enhancing Future Work of Nursing Professionals through Collaborative Human-Robot Interfaces
FW-HTF-RM:通过协作式人机界面增强护理专业人员的未来工作
- 批准号:
2026584 - 财政年份:2020
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Enhancing UK Flood Resilience: Past Floods, Present Threats, Future Responses
增强英国的防洪能力:过去的洪水、当前的威胁、未来的应对措施
- 批准号:
AH/T006064/1 - 财政年份:2020
- 资助金额:
$ 54.88万 - 项目类别:
Research Grant
The future of pet food kibble: enhancing plant protein bioavailability with enzymatic preconditioning
宠物食品粗磨的未来:通过酶预处理提高植物蛋白的生物利用度
- 批准号:
513561-2017 - 财政年份:2019
- 资助金额:
$ 54.88万 - 项目类别:
Collaborative Research and Development Grants