Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices--A Coordinated Computational and Experimental Study
合作研究:探测和控制分子电子器件中的结合结构和电子传输——协调计算和实验研究
基本信息
- 批准号:1609788
- 负责人:
- 金额:$ 17.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Non-Technical:Molecular electronics started with the idea of wiring an individual molecule to two metal electrodes, called single-molecule junctions, as an analogy of single electronic components in commercial microelectronic devices to overcome the limit of famous Moore's prediction. In a single molecular junction, perhaps the most elusive factor that influences the electron transport properties lies in the molecule-electrode contact interfaces. Despite continuous experimental achievements and the conceptual simplicity of molecular electronic devices, challenges for their theoretical understanding of the correlation between electron transport and molecular binding structures are still unresolved. Therefore, probing and controlling the structure and dynamics of single-molecule junctions and consequently controlling the molecular transport of these junctions are critical to the development of this field. The project will integrate molecular simulations for the self-assembly and nanocontact dynamics at surface and interface, and experimental mechanics and electron transport measurements of single-molecule junctions. The project will provide a deep understanding of many transition phenomena observed in molecular force and conductance measurements. If successful, the research will have tremendous impact on molecular electronics community and many other areas, such as energy research and molecular force spectroscopy. The education and outreach objective of this proposal is to tightly integrate the research efforts and results with graduate, undergraduate, and K-12 education and to globally disseminate both research and the education outcomes.Technical:Although the electrical conductance and mechanical properties of single-molecule junctions have achieved significant progress over the past decade, challenges of a detailed understanding of molecular binding structures and electron transport, and the structure-force-conductance correlations, are still unresolved. This research will develop a combined molecular simulation and scanning probe microscope break-junction technique to probe and control the structure and dynamics in molecular electronics devices: (1) Performing molecular simulations by using as close as possible the experimental parameters, dynamics of electrode and realistic atomic interactions to understand the binding structure and force measurement in scanning probe experiment; (2) Developing a dual-mode feedback system with AC-coupled high speed amplifier at radio frequency to capture the key transitions of molecular binding sites that induce conductance changes. The experimental data at nanosecond (ns) timescale will be directly compared with molecular simulation results; (3) Using the coordinated molecular simulation and scanning probe break-junction experiment to probe the structure and dynamics of selected benchmark systems under different mode trainings. Multi-variable force-conductance two-dimensional cross-correlation histogram analyses for the force and conductance traces will be performed in experiments and simulations, and the distinct stable configurations of molecular junctions will be identified. The coordinated computational and experimental research project will also provide an interdisciplinary research for students in materials, mechanics, chemistry, electronics, and computational materials science.
摘要:非技术:分子电子学始于将单个分子连接到两个金属电极的想法,称为单分子结,作为商业微电子设备中单个电子元件的类比,以克服著名的摩尔预测的局限性。在单个分子结中,影响电子传输性质的最难以捉摸的因素可能在于分子-电极接触界面。尽管分子电子器件不断取得实验成就和概念上的简单性,但它们在理论上理解电子传递和分子结合结构之间的相关性的挑战仍然没有解决。因此,探测和控制单分子结的结构和动力学,从而控制这些结的分子输运对于这一领域的发展至关重要。该项目将整合表面和界面上的自组装和纳米接触动力学的分子模拟,以及单分子结的实验力学和电子传输测量。该项目将提供对在分子力和电导测量中观察到的许多转变现象的深入理解。如果研究成功,将对分子电子界和其他许多领域产生巨大的影响,如能源研究和分子力谱。这项建议的教育和推广目标是将研究努力和结果与研究生、本科生和K-12教育紧密结合,并在全球范围内传播研究和教育成果。技术:尽管单分子结的电导和机械性能在过去十年中取得了重大进展,但对分子结合结构和电子传输以及结构-力-电导相互关系的详细了解的挑战仍未解决。本研究将开发一种结合分子模拟和扫描探针显微镜断点技术来探测和控制分子电子器件中的结构和动力学的技术:(1)通过尽可能接近实验参数、电极动力学和真实的原子相互作用来进行分子模拟,以了解扫描探针实验中的结合结构和力测量;(2)开发一个带有交流耦合高速放大器的双模反馈系统,以捕获导致电导变化的分子结合位点的关键跃迁。将纳秒时间尺度下的实验数据直接与分子模拟结果进行比较;(3)利用配位分子模拟和扫描探针断点实验,探索不同模式训练下所选基准体系的结构和动力学。在实验和模拟中,将对力和电导轨迹进行多变量的力-电导二维互相关直方图分析,并将识别出不同的稳定的分子结构型。协调的计算和实验研究项目还将为学生提供材料、力学、化学、电子和计算材料科学的跨学科研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination
- DOI:10.1002/ange.202010696
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Guangqiang Yin;S. Kandapal;Chung-Hao Liu;Heng Wang;Jianxiang Huang;Shu‐Ting Jiang;Tan Ji;Yu Yan;Sandra Khalife;Ruhong Zhou;Libin Ye;Bingqian Xu;Hai‐Bo Yang;M. Nieh;Xiaopeng Li
- 通讯作者:Guangqiang Yin;S. Kandapal;Chung-Hao Liu;Heng Wang;Jianxiang Huang;Shu‐Ting Jiang;Tan Ji;Yu Yan;Sandra Khalife;Ruhong Zhou;Libin Ye;Bingqian Xu;Hai‐Bo Yang;M. Nieh;Xiaopeng Li
Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra
- DOI:10.1021/jacs.1c00625
- 发表时间:2021-04-13
- 期刊:
- 影响因子:15
- 作者:Wang, Heng;Wang, Kun;Li, Xiaopeng
- 通讯作者:Li, Xiaopeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingqian Xu其他文献
Single-molecule detection of proteins and toxins in food using atomic force microscopy
使用原子力显微镜单分子检测食品中的蛋白质和毒素
- DOI:
10.1016/j.tifs.2018.01.005 - 发表时间:
2019 - 期刊:
- 影响因子:15.3
- 作者:
R. Reese;Bingqian Xu - 通讯作者:
Bingqian Xu
Towards age-hardening ability enhancement and high strength in Mg–Gd–Ag alloy by balancing grain refinement and weakening of dynamic precipitation
通过平衡晶粒细化和动态析出弱化来提高镁-钆-银合金的时效硬化能力和高强度
- DOI:
10.1016/j.jma.2024.06.032 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:13.800
- 作者:
Zhenquan Yang;Aibin Ma;Bingqian Xu;Guowei Wang;Jinghua Jiang;Jiapeng Sun - 通讯作者:
Jiapeng Sun
A Novel Highly Integrated SPM System for Single Molecule Studies
用于单分子研究的新型高度集成 SPM 系统
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:4.3
- 作者:
Fan Chen;Jianfeng Zhou;Guojun Chen;Bingqian Xu - 通讯作者:
Bingqian Xu
Fibrinogen clot induced by gold-nanoparticle in vitro.
金纳米颗粒体外诱导纤维蛋白原凝块。
- DOI:
10.1166/jnn.2011.3571 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Guojun Chen;N. Ni;Jianfeng Zhou;Yen;B. Wang;Z. Pan;Bingqian Xu - 通讯作者:
Bingqian Xu
Anti-freezing, adhesive and conductive hydrogel for flexible sensors and deep learning assisted Triboelectric nanogenerators
用于柔性传感器和深度学习辅助的摩擦纳米发电机的抗冻、黏附且导电的水凝胶
- DOI:
10.1016/j.cej.2025.162828 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:13.200
- 作者:
Kaixiang Long;Yuecong Luo;Chenxi Hu;Bingqian Xu;Xiyu Gu;Zhao Ding;Shishang Guo - 通讯作者:
Shishang Guo
Bingqian Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingqian Xu', 18)}}的其他基金
Probe and Control Opto-Electronic Transport in Single Molecular Junction Devices
探测和控制单分子结器件中的光电传输
- 批准号:
2010875 - 财政年份:2020
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Electronic transport in DNA-based single molecular devices
基于 DNA 的单分子器件中的电子传输
- 批准号:
1231967 - 财政年份:2012
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: EAGER:Studying lignocellulosic fine structure and its dynamics in enzymatic hydrolysis of biomass using molecule-recognizing AFM and computational modeling
合作研究:EAGER:使用分子识别 AFM 和计算模型研究木质纤维素精细结构及其在生物质酶水解中的动力学
- 批准号:
1139057 - 财政年份:2011
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Controlling, modulating, and monitoring the electronic and mechanical properties of molecular junction devices at single-molecule level
在单分子水平上控制、调节和监测分子连接器件的电子和机械性能
- 批准号:
0823849 - 财政年份:2008
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319144 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230891 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant