Probe and Control Opto-Electronic Transport in Single Molecular Junction Devices

探测和控制单分子结器件中的光电传输

基本信息

  • 批准号:
    2010875
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical:Moore’s Law is famously known for projecting an increase in computing performance, with the number of transistors in an integrated circuit doubling every two years. As the size of transistors approaches the ultimate limits, new concepts are needed for performance breakthroughs. Molecular electronics aims at developing devices that will complement and eventually supersede current semiconductor technologies. Molecular transport junctions have unique advantages, due to their hybrid solid state-molecular nature and novel interface properties. The variety of possible combinations of molecules and electrodes also permits tailoring the transport properties. Electrically gating charge transport was key to the electronics revolution, but no mechanism currently exists to effectively gate molecular transport junctions. This project will address that gap through a systematic probe of the factors related to electric transport. This will improve the fundamental understanding of these novel devices and enable a new gating mechanism to control electric transport with an unprecedented level of control. This will allow for integration of specific functions into molecular junctions that will enable practical applications. These include bio-photonics and optoelectronic device such as solar cells and LEDs at the single molecule level. This project will train for undergraduate and graduate students in interdisciplinary nanotechnologies that span physics, chemistry and engineering. An introductory course in nanoelectronics will be updated to include the new materials from the project. The PIs will recruit students of different scientific, ethnic, and nationality backgrounds to study science and engineering to foster our next generation scientists and engineers through this project. Students can also participate in related university programs, such as Summer Undergraduate Research Program (SURP), UGA-Louis Stokes Alliances for Minority participation (LSAMP) Program, and the Nanotechnology and Biomedicine REU Site.Technical:This project aims to develop enabling technologies that allow for integration of our recently developed and patented MTBJ systems with optics to probe and control opto-electronic transport in biased single molecule MTBJs through three tasks. The PIs will develop a measuring platform by integrating optical designs into our patented SPM MTBJs that allow the molecule to connect covalently to two electrodes with linker groups, which enables the controlling of the molecule-electrode coupling and aligning the orbitals of conjugated molecules away from the electrodes. Then, they will conduct a systematic study to measure photoconductance where charge carriers in the MTBJs are excited by radiation energy HOMO to LUMO and by the surface plasmons and determine the effect of molecule-electrode contact and molecular conformation on the carrier injection barrier and photon-induced electronic conduction properties. Finally, they will demonstrate a viable single molecule field-effect Raman scattering (FERS) device, a double gated single molecule MTBJ device, with a second electrochemical gating added to the plasma gating. This project will establish a revolutionary new approach using double gating to effectively gate the electrical transport in MTBJs device by exploring the origins of the most important interactions, such as photon-electron, molecule-electrode interactions, being studied in molecular electronics today. The proposed studies are imperative to advancing research in single molecule devices by providing not only the basic knowledge but also necessary skills to develop novel applications. It will also lead to new insights into the interplay between electron transfer and optical properties in single molecule devices, which is critical to many areas, such as photosynthesis and bio-photonics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:摩尔定律以预测计算性能的提高而闻名,集成电路中的晶体管数量每两年翻一番。随着晶体管的尺寸接近极限,需要新的概念来实现性能突破。分子电子学的目标是开发补充并最终取代当前半导体技术的设备。分子传输结具有独特的优势,这是由于它具有固态-分子杂化性质和新颖的界面性质。分子和电极的各种可能组合也允许定制传输特性。电选通电荷传输是电子革命的关键,但目前还不存在有效地选通分子传输结的机制。该项目将通过系统地探讨与电子运输有关的因素来解决这一差距。这将提高对这些新设备的基本理解,并使一种新的门控机制能够以前所未有的控制水平控制电子运输。这将允许将特定的功能集成到分子连接中,从而实现实际应用。这包括单分子水平的生物光子学和光电子学设备,如太阳能电池和LED。该项目将为本科生和研究生提供横跨物理、化学和工程的跨学科纳米技术培训。纳米电子学入门课程将被更新,以纳入该项目的新材料。PIS将招收不同科学、种族和国籍背景的学生学习科学和工程,通过这个项目培养我们的下一代科学家和工程师。学生还可以参加相关的大学项目,如暑期本科生研究计划(SURP)、UGA-Louis Stokes少数民族参与联盟(LSAMP)计划以及纳米技术和生物医学REU站点。技术:该项目旨在开发使能技术,使我们能够将我们最近开发的和获得专利的MTBJ系统与光学相集成,通过三项任务探测和控制偏置单分子MTBJ中的光电传输。PI将开发一个测量平台,将光学设计集成到我们专利的SPM MTBJ中,使分子能够共价连接到具有连接基团的两个电极,从而能够控制分子-电极耦合并使共轭分子的轨道远离电极。然后,他们将进行系统的研究,测量MTBJ中电荷载流子由辐射能量HOMO到LUMO和表面等离子体激发的光导,并确定分子-电极接触和分子构象对载流子注入势垒和光致电子传导性能的影响。最后,他们将展示一种可行的单分子场效应拉曼散射(FERS)装置,一种双门控单分子MTBJ装置,在等离子体门控中添加第二个电化学门控。该项目将建立一种革命性的新方法,通过探索当今分子电子学中正在研究的最重要的相互作用的起源,如光子-电子、分子-电极相互作用,有效地选通MTBJs器件中的电子传输。所提出的研究对于推进单分子器件的研究是势在必行的,它不仅提供了开发新应用所需的基本知识,而且还提供了必要的技能。它还将导致对单分子器件中电子转移和光学属性之间的相互作用的新见解,这对许多领域至关重要,如光合作用和生物光子学。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical Gating Electron Transport through Nonphotoresponisive Molecular Junctions
  • DOI:
    10.21203/rs.3.rs-75718/v1
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhikai Zhao;C. Guo;Feng Sun;T. Ning;Zong-Liang Li;Bingqian Xu;Xueyan Zhao;Lifa Ni;Qingling Wa
  • 通讯作者:
    Zhikai Zhao;C. Guo;Feng Sun;T. Ning;Zong-Liang Li;Bingqian Xu;Xueyan Zhao;Lifa Ni;Qingling Wa
Genipin Crosslinks the Extracellular Matrix to Rescue Developmental and Degenerative Defects, and Accelerates Regeneration of Peripheral Neurons.
Genipin交叉链接细胞外基质以挽救发育和退化性缺陷,并加速周围神经元的再生。
  • DOI:
    pii: 2023.03.22.533831. doi: 10.1101/2023.03.22.533831
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saito-Diaz K;Dietrich P;Wu HF;Sun X;Patel AJ;Wzientek CG;Prudden AR;Boons GJ;Chen S;Studer L;Xu B;Dragatsis I;Zeltner N
  • 通讯作者:
    Zeltner N
Decoding the mechanical conductance switching behaviors of dipyridyl molecular junctions
  • DOI:
    10.1039/d3nr00505d
  • 发表时间:
    2023-06-30
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Sun,Feng;Liu,Lin;Li,Zong-Liang
  • 通讯作者:
    Li,Zong-Liang
Following the Aggregation of Human Prion Protein on Heparin Functionalized Gold Surface in Real Time
  • DOI:
    10.1021/acsabm.2c00779
  • 发表时间:
    2022-10-13
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Zhang,Tong;Pan,Yangang;Xu,Bingqian
  • 通讯作者:
    Xu,Bingqian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bingqian Xu其他文献

Single-molecule detection of proteins and toxins in food using atomic force microscopy
使用原子力显微镜单分子检测食品中的蛋白质和毒素
Towards age-hardening ability enhancement and high strength in Mg–Gd–Ag alloy by balancing grain refinement and weakening of dynamic precipitation
通过平衡晶粒细化和动态析出弱化来提高镁-钆-银合金的时效硬化能力和高强度
  • DOI:
    10.1016/j.jma.2024.06.032
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    13.800
  • 作者:
    Zhenquan Yang;Aibin Ma;Bingqian Xu;Guowei Wang;Jinghua Jiang;Jiapeng Sun
  • 通讯作者:
    Jiapeng Sun
A Novel Highly Integrated SPM System for Single Molecule Studies
用于单分子研究的新型高度集成 SPM 系统
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Fan Chen;Jianfeng Zhou;Guojun Chen;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
Fibrinogen clot induced by gold-nanoparticle in vitro.
金纳米颗粒体外诱导纤维蛋白原凝块。
  • DOI:
    10.1166/jnn.2011.3571
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guojun Chen;N. Ni;Jianfeng Zhou;Yen;B. Wang;Z. Pan;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
Anti-freezing, adhesive and conductive hydrogel for flexible sensors and deep learning assisted Triboelectric nanogenerators
用于柔性传感器和深度学习辅助的摩擦纳米发电机的抗冻、黏附且导电的水凝胶
  • DOI:
    10.1016/j.cej.2025.162828
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Kaixiang Long;Yuecong Luo;Chenxi Hu;Bingqian Xu;Xiyu Gu;Zhao Ding;Shishang Guo
  • 通讯作者:
    Shishang Guo

Bingqian Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bingqian Xu', 18)}}的其他基金

Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices--A Coordinated Computational and Experimental Study
合作研究:探测和控制分子电子器件中的结合结构和电子传输——协调计算和实验研究
  • 批准号:
    1609788
  • 财政年份:
    2016
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Electronic transport in DNA-based single molecular devices
基于 DNA 的单分子器件中的电子传输
  • 批准号:
    1231967
  • 财政年份:
    2012
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER:Studying lignocellulosic fine structure and its dynamics in enzymatic hydrolysis of biomass using molecule-recognizing AFM and computational modeling
合作研究:EAGER:使用分子识别 AFM 和计算模型研究木质纤维素精细结构及其在生物质酶水解中的动力学
  • 批准号:
    1139057
  • 财政年份:
    2011
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Controlling, modulating, and monitoring the electronic and mechanical properties of molecular junction devices at single-molecule level
在单分子水平上控制、调节和监测分子连接器件的电子和机械性能
  • 批准号:
    0823849
  • 财政年份:
    2008
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
  • 批准号:
    10515612
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
Opto-control of apoptosis and its molecular basis
细胞凋亡的光调控及其分子基础
  • 批准号:
    17H05001
  • 财政年份:
    2017
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Toward Opto-phononics: photo-excitation and control of electrons and phonons in nanostructures
走向光声学:纳米结构中电子和声子的光激发和控制
  • 批准号:
    341629-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Opto-phononics: photo-excitation and control of electrons and phonons in nanostructures
走向光声学:纳米结构中电子和声子的光激发和控制
  • 批准号:
    341629-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Opto-phononics: photo-excitation and control of electrons and phonons in nanostructures
走向光声学:纳米结构中电子和声子的光激发和控制
  • 批准号:
    341629-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Active control of opto-electronic properties of single conjugated polymer chains by control of their conformation
通过控制单共轭聚合物链的构象来主动控制其光电特性
  • 批准号:
    26287097
  • 财政年份:
    2014
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Toward Opto-phononics: photo-excitation and control of electrons and phonons in nanostructures
走向光声学:纳米结构中电子和声子的光激发和控制
  • 批准号:
    341629-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum feedback control of levitating opto-mechanics
悬浮光力学的量子反馈控制
  • 批准号:
    EP/K026267/1
  • 财政年份:
    2013
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Research Grant
Toward Opto-phononics: photo-excitation and control of electrons and phonons in nanostructures
走向光声学:纳米结构中电子和声子的光激发和控制
  • 批准号:
    341629-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of hetero-structure control and opto-electronics device application technology based on III-nitride semiconductor nanowall crystal
基于III族氮化物半导体纳米壁晶体的异质结构控制及光电子器件应用技术开发
  • 批准号:
    21310087
  • 财政年份:
    2009
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了