Plasmonically Enhanced Stimulated Coherent Spectroscopy
等离子体增强受激相干光谱
基本信息
- 批准号:1609952
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement and Imaging Program in the Division of Chemistry and the NanoBiosensing Program in the Division of Chemical, Bioengineering, Environmental, and Transport Systems, Professors Ziegler and Reinhard at Boston University merge two very active research areas that have independently already impacted many aspects of our lives; nanomaterials and laser technology. The goal of the project is to exploit the special capabilities afforded by the combination of these two disciplines to advance a technical solution to some important societal needs. More specifically, these researchers explore how ultrafast pulsed laser light interacting with metal nano-materials can be used to enhance and control chemistry on metal surfaces for applications such as chemical catalysis, pollution mitigation, energy conversion, chemical imaging and sensing applications. The on-going experiments develop a detailed description of how molecules interact with nanostructured metal surfaces. Well-established methodologies are already in place that allow the design of nanoscale surfaces with exquisite control. The results of these experiments reveal molecular level details of how these materials interact with molecules and thus provide information on optimizing nanostructures design strategies for the applications cited above. The collaborative nature of this research effort provides participating students with unique experience at the interface of materials and ultrafast science, and thus promote cross-disciplinary activities in science and technology at Boston University. In synergy with the research, this grant supports a substantial education and outreach program to include participation of local Community College students and faculty, inner city and greater Boston area High School students, and High School teachers in conjunction with a newly awarded NSF research experience for undergraduates (REU) site program, as well as other BU based outreach programs.The merger of ultrafast spectroscopy and nanotechnology is being used to study the dynamics and interactions of molecules on plasmonically active surfaces via three ultrafast laser techniques. Plasmonically enhanced (PE) optical heterodyne detected Raman spectroscopy (PE-OHD-RIKES) offers sensitivity advantages for viewing Raman responses on plasmonic surfaces, especially for low frequency modes resulting from molecular-surface physi-adsorption, and a phase sensitive methodology for understanding vibrational and plasmon contributions to nonlinear responses. Analysis of PE three-pulse photon echo peak shift measurements (PE 3PEPS) yields a dynamical description of optical dephasing, or equivalently solvation, of molecules on plasmonic surfaces (inhomogeneous energy distributions, spectral diffusion and fluctuation timescales). Finally, the successful implementation of PE femtosecond stimulated Raman spectroscopy (PE-FSRS), could have enormous impact as a new probe of surface chemistry allowing vibrationally-specific labels to follow the evolution of short-lived intermediates and rapid conformation changes of excited molecules on plasmonic surfaces. Determined dynamical and structural properties of analytes on plasmonic substrates is being contrasted with those of liquid solutions and correlated with observed plasmonic based phenomenon such as SERS enhancement factors. Substrates are being fabricated by a template-guided self-assembly procedure which results in electromagnetically strongly coupled nanoparticle cluster arrays where optical fields are enhanced by both near field coupling between nanoparticles, and diffractive coupling between clusters. Detailed molecular level information about how molecules interact with engineered plasmonic surfaces is providing rational design strategies for maximizing plasmon enhancement of optical responses and chemical outcomes. The implementation of this methodology is impactful upon optical imaging capabilities in terms of improved sensitivity and faster acquisition times, real time monitoring of photoinduced surface chemical reactivity, enhanced chemical and biological sensing capabilities, and improved strategies for subsequent spontaneous SERS and other plasmonic based techniques.
在化学部的化学测量和成像计划以及化学、生物工程、环境和运输系统部的纳米生物传感计划的支持下,波士顿大学的齐格勒教授和莱因哈德教授合并了两个非常活跃的研究领域,这两个领域已经独立地影响了我们生活的许多方面;纳米材料和激光技术。 该项目的目标是利用这两个学科相结合所提供的特殊能力,以推进一些重要的社会需求的技术解决方案。 更具体地说,这些研究人员探索了如何利用与金属纳米材料相互作用的超快脉冲激光来增强和控制金属表面的化学反应,以应用于化学催化、污染缓解、能量转换、化学成像和传感应用。正在进行的实验详细描述了分子如何与纳米结构的金属表面相互作用。成熟的方法已经到位,可以通过精致的控制来设计纳米级表面。 这些实验的结果揭示了这些材料如何与分子相互作用的分子水平的细节,从而为上述应用提供了优化纳米结构设计策略的信息。这项研究工作的协作性质为参与的学生提供了材料和超快科学界面的独特体验,从而促进了波士顿大学科学技术领域的跨学科活动。 与研究协同,这笔赠款支持大量的教育和推广计划,包括当地社区学院的学生和教师,内城和大波士顿地区高中学生和高中教师的参与,以及新授予的NSF本科生研究经验(REU)现场计划,超快光谱学和纳米技术的结合正在通过三种超快激光技术来研究等离子体活性表面上分子的动力学和相互作用。 等离子体增强(PE)光外差检测拉曼光谱(PE-OHD-RIKES)提供了用于观察等离子体表面上的拉曼响应的灵敏度优势,特别是对于由分子表面物理吸附产生的低频模式,以及用于理解振动和等离子体对非线性响应的贡献的相敏方法。 PE三脉冲光子回波峰移测量(PE 3 PEPS)的分析产生的光学退相,或等效的溶剂化,等离子体表面上的分子(不均匀的能量分布,光谱扩散和波动的时间尺度)的动态描述。最后,成功实施的PE飞秒受激拉曼光谱(PE-FSRS),可以有巨大的影响,作为一种新的探针的表面化学允许振动特定的标签,以遵循的演变,短命的中间体和快速构象变化的激发分子的等离子体表面。等离子体基片上的分析物的确定的动力学和结构特性与液体溶液的那些进行对比,并与观察到的基于等离子体的现象,如Sers增强因子相关。通过模板引导的自组装过程制造衬底,该过程导致电磁强耦合的纳米颗粒簇阵列,其中光场通过纳米颗粒之间的近场耦合和簇之间的衍射耦合来增强。 关于分子如何与工程等离子体表面相互作用的详细分子水平信息提供了合理的设计策略,用于最大化光学响应和化学结果的等离子体增强。该方法的实施在改善的灵敏度和更快的采集时间、光致表面化学反应性的真实的时间监测、增强的化学和生物感测能力以及用于随后的自发Sers和其他基于等离子体的技术的改善的策略方面对光学成像能力有影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Ziegler其他文献
A unified framework for the description of plasmonically enhanced ultrafast and cw Raman spectroscopies
用于描述等离子体增强超快和连续拉曼光谱的统一框架
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ziegler - 通讯作者:
Lawrence Ziegler
Lawrence Ziegler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Ziegler', 18)}}的其他基金
Ultrafast 2DIR Studies of Dynamics in Dense Gas and Supercritical Fluid Solutions
稠密气体和超临界流体溶液动力学的超快 2DIR 研究
- 批准号:
2102427 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Ultrafast dynamics of supercritical fluid solutions
超临界流体溶液的超快动力学
- 批准号:
1152797 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Ultrafast Studies of Electronic and Nuclear Responses
电子和核反应的超快研究
- 批准号:
0310497 - 财政年份:2003
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Time and Frequency Domain Studies of Ultrafast Dynamics in Liquids and Solutions
液体和溶液中超快动力学的时域和频域研究
- 批准号:
9712725 - 财政年份:1997
- 资助金额:
$ 55万 - 项目类别:
Continuing grant
Resonance Emission Studies of Intra- and Intermolecular Ultrafast Dynamics
分子内和分子间超快动力学的共振发射研究
- 批准号:
9316148 - 财政年份:1993
- 资助金额:
$ 55万 - 项目类别:
Continuing grant
Linear and Nonlinear Resonance Raman Studies of Photodissociation
光解离的线性和非线性共振拉曼研究
- 批准号:
9212601 - 财政年份:1992
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Linear and Nonlinear Resonance Raman Studies of Photo- dissociation
光解离的线性和非线性共振拉曼研究
- 批准号:
8918418 - 财政年份:1989
- 资助金额:
$ 55万 - 项目类别:
Continuing grant
Inelastic Light Scattering Studies of Photodissociation
光解离的非弹性光散射研究
- 批准号:
8513343 - 财政年份:1985
- 资助金额:
$ 55万 - 项目类别:
Continuing grant
相似海外基金
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
- 批准号:
24K11137 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
- 批准号:
2335104 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Linkage Projects
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
- 批准号:
10095272 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
- 批准号:
10096979 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
- 批准号:
10103109 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
- 批准号:
10109956 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded