Rational Design of Surface Modified Nanoparticles for Modulation of Amyloid Protein Aggregation
用于调节淀粉样蛋白聚集的表面修饰纳米颗粒的合理设计
基本信息
- 批准号:1609939
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical DescriptionThe aggregation of amyloid proteins is involved in a wide range of processes including the pathogenesis of numerous diseases (Alzheimer's disease, type 2 diabetes, etc.) as well as in biofouling associated with applications such as food production or water purification. The development of tools to prevent or slow this aggregation would thus be important in both therapeutics and industrial processes. The main goal of this work is to develop a platform for the rational design of nanoparticles capable of modulating amyloid protein aggregation. By coupling experiments and molecular modeling, this project will develop a novel description of the complex interactions that occur at the interface of biological environments and synthetic materials. This theory can then be applied to predict the influence of nanoparticle-protein interactions upon amyloid protein aggregation, thus representing a design platform. By advancing our understanding of interactions between nanoparticles and amyloid proteins, we will be able to rationally design nanoparticles for treating debilitating diseases, reduce unwanted biofouling, and facilitate industrial applications. Graduate and undergraduate students participating in the project will acquire cutting-edge experimental techniques and frontier modeling approaches to train them for future careers in these areas.Technical DescriptionThe proposed research considers surface modified nanoparticles for the modulation of amyloid protein aggregation, which plays a deleterious role in disease and industrial processes. Recently, nanoparticles have emerged as attractive tools for selective protein interactions. Nanoparticle surface properties, size, and shape can be accurately controlled, and therefore nanoparticles provide an ideal tunable platform to modulate amyloid protein aggregation. The main goal of this work is to couple experiments and molecular modeling to develop a novel description of the complex coupling of interactions that occur at the interface of biological environments and synthetic materials. These interactions can be subsequently used for the rational design of nanoparticles for modulation of amyloid protein aggregation. The research is guided by the central hypothesis that nanoparticle-induced changes in the local solution environment drive their ability to influence amyloid protein aggregation. The coupling of experiments and modeling will provide the fundamental understanding needed to create design platforms for building nanostructured biomaterial interfaces that influence protein aggregation. First, fully atomistic molecular simulations will be used in conjunction with detailed molecular theory to describe the local solution environment. Second, a molecular thermodynamic model of amyloid protein aggregation will be implemented. Finally, molecular level theories for nanoparticles and amyloid proteins will be coupled to quantify how a single nanoparticle influences local solution conditions to affect the stability of aggregates. This coupled model will be used to rationally design and synthesize surface modified nanoparticles to experimentally evaluate their predicted effects on amyloid protein aggregation. Agreement between experimental data and theoretical predictions will substantiate the proposed hypothesis.The collaborative nature of the research environment created in this project will be exploited to promote biomedical engineering education within both research and classroom settings. The proposed research will establish a summer undergraduate research internship in which students will complete complementary computational and experimental research tasks. To introduce this research area to pre-college students, a design-based module will be developed that familiarizes students with the concepts of biomaterial design for applications in protein aggregation. Together, these efforts will provide both undergraduate and pre-college students with an understanding of how engineering technologies can facilitate the control of biological phenomena.
淀粉样蛋白的聚集参与了广泛的过程,包括许多疾病的发病机制(阿尔茨海默病、2型糖尿病等),以及与食品生产或水净化等应用相关的生物污垢。因此,预防或减缓这种聚集的工具的发展在治疗和工业过程中都是重要的。这项工作的主要目标是为合理设计能够调节淀粉样蛋白聚集的纳米颗粒开发一个平台。通过耦合实验和分子建模,该项目将对发生在生物环境和合成材料界面上的复杂相互作用进行新颖的描述。这一理论可以应用于预测纳米粒子-蛋白质相互作用对淀粉样蛋白聚集的影响,从而代表了一个设计平台。通过加深我们对纳米颗粒和淀粉样蛋白之间相互作用的理解,我们将能够合理地设计纳米颗粒来治疗使人衰弱的疾病,减少不必要的生物污染,并促进工业应用。参与该项目的研究生和本科生将获得尖端的实验技术和前沿建模方法,以培养他们未来在这些领域的职业生涯。技术描述提出的研究考虑了表面修饰纳米颗粒对淀粉样蛋白聚集的调节,淀粉样蛋白聚集在疾病和工业过程中起着有害作用。最近,纳米颗粒已经成为选择性蛋白质相互作用的有吸引力的工具。纳米颗粒的表面性质、大小和形状可以精确控制,因此纳米颗粒提供了一个理想的可调平台来调节淀粉样蛋白的聚集。这项工作的主要目标是将实验和分子建模相结合,以开发一种新的描述发生在生物环境和合成材料界面上的相互作用的复杂耦合。这些相互作用可以随后用于合理设计纳米颗粒来调节淀粉样蛋白聚集。这项研究的核心假设是,纳米颗粒诱导的局部溶液环境的变化驱动了它们影响淀粉样蛋白聚集的能力。实验和建模的结合将为创建影响蛋白质聚集的纳米结构生物材料界面的设计平台提供基本的理解。首先,全原子分子模拟将与详细的分子理论结合使用来描述局部溶液环境。其次,将实现淀粉样蛋白聚集的分子热力学模型。最后,纳米颗粒和淀粉样蛋白的分子水平理论将结合起来,量化单个纳米颗粒如何影响局部溶液条件,从而影响聚集体的稳定性。该耦合模型将用于合理设计和合成表面修饰纳米颗粒,并通过实验评价其对淀粉样蛋白聚集的预测效果。实验数据和理论预测之间的一致性将证实所提出的假设。在这个项目中创造的研究环境的协作性质将被用来促进研究和课堂环境中的生物医学工程教育。拟议的研究将建立一个暑期本科生研究实习,学生将完成互补的计算和实验研究任务。为了向大学预科学生介绍这一研究领域,将开发一个基于设计的模块,使学生熟悉生物材料设计在蛋白质聚集中的应用概念。总之,这些努力将使本科生和大学预科生了解工程技术如何促进生物现象的控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Moss其他文献
Binding and Transport of Amyloid-β by P-Glycoprotein: A Novel Therapeutic Target in Alzheimer's Disease
- DOI:
10.1016/j.bpj.2018.11.2300 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Hope Holt;Elizabeth Moore;Madeline Riese;Michelle Faucett;Francisco Gonzalez;Melissa Moss - 通讯作者:
Melissa Moss
Patterning amyloid-β aggregation under the effect of acetylcholinesterase using a biological nanopore - an emin vitro/em study
利用生物纳米孔在乙酰胆碱酯酶作用下对淀粉样β聚集进行图案化——一项体外/体内研究
- DOI:
10.1016/j.snr.2023.100170 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:7.600
- 作者:
Nandhini Subramanian;Brittany Watson;Chen-Zhong Li;Melissa Moss;Chang Liu - 通讯作者:
Chang Liu
Melissa Moss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Moss', 18)}}的其他基金
REU Site: Engineering Medical Advances at the Interface of Experiments and Computation
REU 网站:实验与计算界面的工程医学进展
- 批准号:
1852331 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
UNS: COLLABORATIVE RESEARCH: Study of Amyloid Protein Oligomerization Using Microchannel Electrophoresis
UNS:合作研究:使用微通道电泳研究淀粉样蛋白寡聚化
- 批准号:
1511562 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
REU Site: Biomolecular and Biomechanical Interactions
REU 网站:生物分子和生物力学相互作用
- 批准号:
1005138 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Amyloid fibril formation in bulk solution and on supported phospholipid bilayers
职业:在本体溶液中和支持的磷脂双层上形成淀粉样原纤维
- 批准号:
0644826 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
- 批准号:
24K17272 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Design of surface modified membranes for recovery of key fertilizer macronutrients from wastewater
职业:设计表面改性膜,用于从废水中回收关键肥料常量营养素
- 批准号:
2339468 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
- 批准号:
23H03461 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New strategy for the design of photocatalysts based on the visualization of surface structures
基于表面结构可视化的光催化剂设计新策略
- 批准号:
23K17355 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Design, Control and Flight Demonstration of Bio-Mimetic Surface Pressure Sensor Array-Equipped Morphing Aircraft
仿生表面压力传感器阵列变形飞机设计、控制与飞行演示
- 批准号:
23K17333 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
The design and simulation of micro-reactors for space propulsion, lunar surface power and planetary defence
空间推进、月球表面动力和行星防御微反应堆的设计与仿真
- 批准号:
2888098 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Studentship
Design method of MD cell structure with free curved surface
自由曲面MD细胞结构设计方法
- 批准号:
22K03842 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Computational Design of Multi-functional Minimal-Surface Lattice Structures
合作研究:多功能最小表面晶格结构的计算设计
- 批准号:
2130668 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant