Collaborative Research: A Roadmap Toward Terahertz Optoelectronics Using Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces

合作研究:利用简并半导体界面电荷密度波的主动控制实现太赫兹光电子学的路线图

基本信息

  • 批准号:
    1610200
  • 负责人:
  • 金额:
    $ 14.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The information revolution of the past decades has been driven by unprecedented advances in microprocessor technology and a continuous progression towards smaller, faster and more efficient electronic devices. As a result, remarkable new capabilities have been enabled across vastly different areas of human activity such as telecommunication, computation, finances, national security and space exploration. Despite this progress, the past few years has seen scaling issues associated with electronic interconnect delay times and heat dissipation result in the saturation of microprocessor clock speeds at about 3GHz. Photonic integrated circuits, being the analogue of electronic circuits but with photons substituting for electrons as the information carrier, possess an exceedingly high data-carrying capacity and have the potential to address some of the present bottlenecks in microprocessor technology. However, the dielectric waveguides and interconnects currently used in photonic circuits are limited in size by the fundamental law of diffraction, leading to dimensional mismatch between electronic and photonic components. As a result, their practical implementation in real-world devices, apart from telecommunications, has been substantially hindered. Here we propose a new data processing element, an optoelectronic switch, which assimilates the best characteristics of photonics and electronics. It has the potential to address the current information bandwidth limitations of electronic devices, while simultaneously enabling device sizes that are substantially smaller than traditional photonic elements. A significant impact of this work will be the fostering of cutting-edge research opportunities for graduate and undergraduate students, including from underrepresented groups, implementing a new teaching methodology and pursuing a broader outreach by engaging high school children with fascinating topics in math and sciences.This proposal seeks to develop a new optoelectronic device, referred to as Surface Plasmon Diode, with operation based on active control of charge-density waves propagating at heavily doped (degenerate) semiconductor interfaces. A synergy between theory and experiment will be pursued to gain insight into the complex multi-physics phenomena behind the device operation, including charge transport and recombination at high-gradient, heavily doped pn+- junctions, spatially and time dependent local permittivity variations at the semiconductor interfaces, and thermal effects due to Ohmic heating and electromagnetic energy dissipation. The experimental efforts will lead to Proof of Concept devices based on Silicon-on-Insulator and epitaxially-grown III-V semiconductor materials and compounds. Bulk material growth/fabrication and characterization will inform the theoretical modeling, which in turn will guide the fabrication and experimental characterization of the prototype. The transient response of the devices will be tested using a direct detection method (IR-detector) for modulation rates ranging from low (kHz) to moderate and high frequencies (few MHz up to 3GHz). For data rates higher than 3GHz a new on-chip electro-optical detection will be implemented. These experimental measurements, in conjunction with the theory, will establish the physical limitations and scaling laws governing the device 3dB bandwidth, and establish a clear roadmap toward direct, electro-optical signal modulation at rates down to the picosecond time scale for signal modulation surpassing -10dB and mode sizes that are substantially smaller compared to present-day optoelectronics elements. The proposed research presents a new approach toward fast optical interconnects, circuitry and logic elements and may lead to breakthrough technologies related to integrated optics and electronics, a multibillion dollar industry.
过去几十年的信息革命是由微处理器技术的前所未有的进步以及朝着更小、更快和更高效的电子设备的不断进步推动的。因此,在电信、计算、金融、国家安全和太空探索等人类活动的非常不同的领域,已经实现了显著的新能力。尽管取得了这一进展,但在过去几年中,与电子互连延迟时间和散热相关的扩展问题导致微处理器时钟速度达到约3 GHz的饱和。光子集成电路是电子电路的模拟,但以光子代替电子作为信息载体,具有极高的数据承载能力,并有可能解决目前微处理器技术中的一些瓶颈。然而,目前用于光子电路的介质波导和互连在尺寸上受到基本绕射定律的限制,导致电子和光子元件之间的尺寸不匹配。因此,除了电信之外,它们在现实世界设备中的实际实施也受到了很大的阻碍。在这里,我们提出了一种新的数据处理元件--光电开关,它吸收了光子学和电子学的最佳特性。它有可能解决目前电子设备的信息带宽限制,同时使设备尺寸大大小于传统的光子元件。这项工作的重大影响将是为研究生和本科生培养尖端研究机会,包括来自代表性不足的群体,实施新的教学方法,并通过吸引高中生在数学和科学方面的迷人主题来寻求更广泛的扩展。这项提议寻求开发一种新的光电子器件,称为表面等离子体二极管,其运行基于对重掺杂(简并)半导体界面上传播的电荷密度波的主动控制。理论和实验之间的协同作用将被用来深入了解器件运行背后的复杂的多物理现象,包括高梯度、重掺杂pn+结的电荷传输和复合、半导体界面上随时间和空间变化的局部介电常数变化,以及欧姆加热和电磁能量耗散造成的热效应。这些实验工作将导致基于绝缘体上硅和外延生长的III-V半导体材料和化合物的概念验证器件。块体材料的生长/制备和表征将为理论建模提供信息,而理论建模又将指导原型的制备和实验表征。这些设备的瞬时响应将使用直接检测方法(红外探测器)进行测试,调制速率范围从低(KHz)到中高频(几兆赫到3 GHz)。对于高于3 GHz的数据速率,将实现一种新的片上光电检测。这些实验测量与理论相结合,将确立控制该设备3db带宽的物理限制和定标规律,并建立一个明确的路线图,以实现直接、电光信号调制,其速率降至皮秒时间尺度,信号调制超过-10db,模式大小与目前的光电子元件相比要小得多。这项拟议的研究为快速光学互连、电路和逻辑元件提供了一种新的方法,并可能导致与集成光学和电子相关的突破性技术,这是一个价值数十亿美元的行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dentcho Genov其他文献

Dentcho Genov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129970
  • 财政年份:
    2021
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2138770
  • 财政年份:
    2021
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129895
  • 财政年份:
    2021
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129909
  • 财政年份:
    2021
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028881
  • 财政年份:
    2020
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028930
  • 财政年份:
    2020
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028923
  • 财政年份:
    2020
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028955
  • 财政年份:
    2020
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028956
  • 财政年份:
    2020
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: An Unified Learnable Roadmap for Sequential Decision Making in Relational Domains
EAGER:协作研究:关系领域顺序决策的统一可学习路线图
  • 批准号:
    1836565
  • 财政年份:
    2018
  • 资助金额:
    $ 14.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了