EAGER: Collaborative Research: An Unified Learnable Roadmap for Sequential Decision Making in Relational Domains

EAGER:协作研究:关系领域顺序决策的统一可学习路线图

基本信息

  • 批准号:
    1836565
  • 负责人:
  • 金额:
    $ 9.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project seeks to develop new algorithms and data structures for learning and planning in situations where the environment is represented with a set of relations between objects. Relational representations capture interactions between objects in a succinct and easily interpretable representation. Examples of domains that are well-suited to relational representations includes intelligent drones assisting soldiers, activities in a supply chain management, communication and friendship connections in a social network, and tracking individuals and activities in video. Most recent advances in machine learning and planning, such as so-called "deep neural networks", however, employ simple "flat" representations, where the state of the world is an uninterpreted string of bits. This project will make machine learning and planning methods easier to use and more robust by generalizing them so that they explicitly work with relational models and data. The methods, theory, and data resulting from this proposal will impact the scientific community in several positive ways and will be made publicly available through an appropriate website. The research will be disseminated through refereed journals and conference proceedings and made available to researchers. Code for the proposed algorithms and descriptions of new benchmark problems will also be made publicly available. The investigators will work on organizing workshops and tutorials based on the challenges and findings arising from this project. Many special purpose solutions have been developed to address small parts of these problems, but there are no general purpose tools that harness recent advances in machine learning to tackle this family of problems. This proposal seeks to develop such tools, drawing upon the investigators' prior experience in learning relational regression trees and experience in value function approximation for reinforcement learning. In addition, this project seeks to build a bridge between recent advances in deep learning, which generally has not been compatible with relational representations, and recent advances in relational learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的算法和数据结构,用于学习和规划环境中的对象之间的一组关系。关系表示以简洁且易于解释的表示形式捕获对象之间的交互。非常适合关系表示的领域的示例包括智能无人机协助士兵,供应链管理中的活动,社交网络中的通信和友谊连接,以及跟踪视频中的个人和活动。 然而,机器学习和规划的最新进展,例如所谓的“深度神经网络”,采用简单的“平面”表示,其中世界的状态是一个未解释的比特串。 该项目将使机器学习和规划方法更容易使用,更强大,通过推广它们,使它们显式地与关系模型和数据一起工作。 该提案产生的方法、理论和数据将以几种积极的方式影响科学界,并将通过适当的网站公开提供。这项研究将通过参考期刊和会议记录传播,并提供给研究人员。拟议算法的代码和新基准问题的描述也将公开提供。调查人员将根据该项目带来的挑战和调查结果组织讲习班和辅导班。已经开发了许多特殊用途的解决方案来解决这些问题的一小部分,但没有通用工具可以利用机器学习的最新进展来解决这一系列问题。该提案旨在开发此类工具,利用研究人员先前在学习关系回归树方面的经验和强化学习的值函数近似经验。此外,该项目旨在为深度学习的最新进展(通常与关系表示不兼容)和关系学习的最新进展搭建桥梁。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lifted Message Passing for Hybrid Probabilistic Inference
混合概率推理的提升消息传递
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Yuqiao;Ruozzi, Nicholas;Natarajan, Sriraam
  • 通讯作者:
    Natarajan, Sriraam
Lifted Hybrid Variational Inference
  • DOI:
    10.24963/ijcai.2020/585
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuqiao Chen;Yibo Yang;S. Natarajan;Nicholas Ruozzi
  • 通讯作者:
    Yuqiao Chen;Yibo Yang;S. Natarajan;Nicholas Ruozzi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriraam Natarajan其他文献

Population Size Extrapolation in Relational Probabilistic Modelling
关系概率建模中的人口规模外推
  • DOI:
    10.1007/978-3-319-11508-5_25
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Poole;David Buchman;Seyed Mehran Kazemi;K. Kersting;Sriraam Natarajan
  • 通讯作者:
    Sriraam Natarajan
Interactive Transfer Learning in Relational Domains
  • DOI:
    10.1007/s13218-020-00659-6
  • 发表时间:
    2020-05-10
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Raksha Kumaraswamy;Nandini Ramanan;Phillip Odom;Sriraam Natarajan
  • 通讯作者:
    Sriraam Natarajan
Fast Relational Probabilistic Inference and Learning: Approximate Counting via Hypergraphs
快速关系概率推理和学习:通过超图进行近似计数
  • DOI:
    10.1609/aaai.v33i01.33017816
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Das;D. Dhami;Gautam Kunapuli;K. Kersting;Sriraam Natarajan
  • 通讯作者:
    Sriraam Natarajan
Anomaly Detection in Text: The Value of Domain Knowledge
文本中的异常检测:领域知识的价值
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raksha Kumaraswamy;Anurag Wazalwar;Tushar Khot;J. Shavlik;Sriraam Natarajan
  • 通讯作者:
    Sriraam Natarajan
Modeling heart procedures from EHRs: An application of exponential families
从电子病历 (EHR) 中模拟心脏手术:指数族的应用

Sriraam Natarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriraam Natarajan', 18)}}的其他基金

SCH: EXP: Intelligent Clinical Decision Support with Probabilistic and Temporal EHR Modeling
SCH:EXP:具有概率和时间 EHR 建模的智能临床决策支持
  • 批准号:
    1806332
  • 财政年份:
    2017
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
SCH: EXP: Intelligent Clinical Decision Support with Probabilistic and Temporal EHR Modeling
SCH:EXP:具有概率和时间 EHR 建模的智能临床决策支持
  • 批准号:
    1343940
  • 财政年份:
    2014
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了