ECCS-CDS&E: High-performance computational framework for real-time phase retrieval X-Ray imaging

ECCS-CDS

基本信息

  • 批准号:
    1610315
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Modern science and technology increasingly rely on materials and devices utilizing unique properties of nanometer-scale composition. It is critical to be able to characterize such complex nanoscale configurations. A unique tool for characterization of nanoscale materials and devices is X-ray imaging, which can provide structural images with a high spatial and time resolution. In a typical X-ray imaging setup an X-ray source generates an X-ray beam that is scattered from the structure. The scattered X-ray beam is captured by a camera, and the resulting picture is processed to reconstruct the actual structure configuration. Due to their short wavelength X-rays can penetrate the structure's volume thus enabling not only two-dimensional but also three-dimensional imaging. X-ray imaging typically requires a significant computational effort for image reconstruction and often the computational time is longer than the time for performing the experiment. This project aims at closing this gap by creating high-performance computational tools for real-time X-ray imaging. The created software is to serve a broad community of synchrotron scientists. The developments in nanoscale imaging are intended to have applications in areas ranging from condensed matter physics to biology and chemistry of single molecules. A close interdisciplinary research effort between a computational researcher and an expert in X-ray scattering and material physics will benefit graduate students and postdocs working in these fields, and is likely to result in new and unexpected discoveries. The goal of this research project is to create a high-performance computational framework for real-time X-ray imaging to be performed at X-ray scattering facilities. The X-ray imaging is to be accomplished using a new emerging three-dimensional X-ray imaging methodology called Coherent X-ray Diffractive Imaging (CXDI), which is based on computational phase-retrieval of the X-ray diffraction patterns. The proposed research includes algorithm and code implementation, practical application, and educational components. A set of algorithms for phase retrieval X-ray imaging are to be introduced, including methods for image representation and use of relevant constraints, methods for computing transformations between real to reciprocal spaces, and implementations on massively parallel computing systems. The research effort also introduces a virtual synchrotron framework utilizing computational methods to simulate experimental image reconstruction and provide required constraints, with magnetic nanostructures as a testbed. The developed computational framework is to be applied to real-time study of nanostructured materials and devices, such as nanoscale magnetic devices. The program integrates research and education by enhancing undergraduate and graduate courses on computational physics, micromagnetics and electromagnetics as well as providing graduate and undergraduate student training and contributing to diversity.
现代科学和技术越来越依赖于利用纳米尺度组成的独特性质的材料和设备。能够表征这种复杂的纳米级结构是至关重要的。表征纳米材料和器件的一种独特工具是X射线成像,它可以提供具有高空间和时间分辨率的结构图像。在典型的X射线成像设置中,X射线源生成从结构散射的X射线束。 散射的X射线束由相机捕获,并且处理所得到的图片以重建实际的结构配置。由于它们的短波长,X射线可以穿透结构的体积,因此不仅能够进行二维成像,还能够进行三维成像。X射线成像通常需要大量的计算工作来进行图像重建,并且计算时间通常长于执行实验的时间。该项目旨在通过创建用于实时X射线成像的高性能计算工具来缩小这一差距。创建的软件是为了服务于广泛的同步加速器科学家社区。纳米成像的发展旨在应用于从凝聚态物理到单分子生物学和化学的各个领域。计算研究人员和X射线散射和材料物理专家之间的密切跨学科研究工作将使在这些领域工作的研究生和博士后受益,并可能导致新的和意想不到的发现。 该研究项目的目标是创建一个高性能的计算框架,用于在X射线散射设施中执行实时X射线成像。X射线成像将使用称为相干X射线衍射成像(CXDI)的新出现的三维X射线成像方法来完成,该方法基于X射线衍射图案的计算相位检索。建议的研究包括算法和代码实现,实际应用和教育组件。介绍了一组相位恢复X射线成像算法,包括图像表示方法和相关约束的使用,计算真实的倒易空间之间的变换的方法,以及在大规模并行计算系统上的实现。研究工作还引入了一个虚拟的同步加速器框架,利用计算方法来模拟实验图像重建,并提供所需的约束,磁性纳米结构作为测试平台。所开发的计算框架将被应用于纳米结构材料和器件的实时研究,例如纳米磁性器件。该计划通过加强计算物理学,微磁学和电磁学的本科和研究生课程,以及提供研究生和本科生培训和促进多样性来整合研究和教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vitaliy Lomakin其他文献

Fast Fourier Transform periodic interpolation method for superposition sums in a periodic unit cell
周期性晶胞叠加和的快速傅立叶变换周期性插值方法
  • DOI:
    10.48550/arxiv.2312.02376
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fangzhou Ai;Vitaliy Lomakin
  • 通讯作者:
    Vitaliy Lomakin
Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths
通过可调谐的保守和非保守耦合强度在相互作用涡旋系统中的不同动力学
  • DOI:
    10.1038/s42005-025-02006-3
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Alexandre Abbass Hamadeh;Abbas Koujok;Davi R. Rodrigues;Alejandro Riveros;Vitaliy Lomakin;Giovanni Finocchio;Grégoire De Loubens;Olivier Klein;Philipp Pirro
  • 通讯作者:
    Philipp Pirro
Effects of Dzyaloshinskii-Moriya interaction on the spin transfer magnetization switching in magnetic tunnel junctions
Dzyaloshinskii-Moriya 相互作用对磁隧道结自旋转移磁化强度转换的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joao Sampaio;A. Khvalkovskiy;M. Kuteifan;M. Cubukcu;D. Apalkov;Vitaliy Lomakin;V. Cros;N. Reyren
  • 通讯作者:
    N. Reyren
A multilevel Cartesian non-uniform grid time domain algorithm
  • DOI:
    10.1016/j.jcp.2010.07.026
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jun Meng;Amir Boag;Vitaliy Lomakin;Eric Michielssen
  • 通讯作者:
    Eric Michielssen
Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film
拓扑纹理磁性薄膜中的相关自旋波产生和畴壁振荡
  • DOI:
    10.1038/s41563-024-02085-7
  • 发表时间:
    2025-01-27
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Chuhang Liu;Fangzhou Ai;Spencer Reisbick;Alfred Zong;Alexandre Pofelski;Myung-Geun Han;Fernando Camino;Chunguang Jing;Vitaliy Lomakin;Yimei Zhu
  • 通讯作者:
    Yimei Zhu

Vitaliy Lomakin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vitaliy Lomakin', 18)}}的其他基金

Optical Control of Dynamics in Spintronic Devices
自旋电子器件中动力学的光学控制
  • 批准号:
    1202583
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: High-performance hybrid micromagnetic-electromagnetic simulators for memory and high-performance data storage devices
SHF:小型:协作研究:用于内存和高性能数据存储设备的高性能混合微磁-电磁模拟器
  • 批准号:
    1117911
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了