Hamiltonian Dynamics and Pseudoholomorphic Curves

哈密​​顿动力学和伪全纯曲线

基本信息

  • 批准号:
    1610452
  • 负责人:
  • 金额:
    $ 11.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

An example of a system studied in classical mechanics is the motion of a small satellite under the gravitational influence of planets. Historically, symplectic geometry grew out of studying situations such as this, in which the collection of all possible positions and momenta of the system (phase space) was seen to have the structure of a special space known as a symplectic manifold. Physical laws, like conservation of energy, then gave rise to models of the systems as dynamical systems on submanifolds of phase space corresponding to different energy levels. Modern symplectic methods have established deep connections between global properties of symplectic manifolds and the associated dynamics on a special class of energy levels, namely contact-type hypersurfaces, but have thus far proved to be of rather limited use for a general energy level. This project aims to rectify this deficiency and use global symplectic techniques to study dynamics on arbitrary energy levels by analyzing a generalized class of curves, known as feral pseudoholomorphic curves. This project concerns research at the interface of geometric analysis, symplectic topology, and dynamical systems. The key idea is the use of a certain newly defined class of infinite Hofer-energy pseudoholomorphic curves, namely feral curves, to study Hamiltonian flows on prescribed energy surfaces in symplectic manifolds of arbitrary dimension and certain volume-preserving flows on three-manifolds in general. More specifically, the aim is to study these curves and their properties and to use them to establish non-minimality of a wide range of volume preserving flows in dimension three. A further aim is to study the generic asymptotic limit of such feral curves and to determine whether or not symplectic field theory admits an extension to symplectic manifolds with generic smooth boundary. Successful completion of this research has the potential to solve the volume-preserving Gottschalk conjecture, broadly extend symplectic field theory, and possibly yield key new insights on low dimensional differential topology.
经典力学中研究系统的一个例子是小卫星在行星引力影响下的运动。历史上,辛几何起源于对这样的情况的研究,在这种情况下,系统(相空间)的所有可能的位置和动量的集合被视为具有被称为辛流形的特殊空间的结构。物理定律,如能量守恒定律,随后产生了相空间子流形上对应于不同能级的动力学系统模型。现代辛方法在一类特殊的能级,即接触型超曲面上,建立了辛流形的整体性质与相关动力学之间的深层联系,但到目前为止,对一般能级的使用是相当有限的。这个项目旨在弥补这一不足,并使用全局辛技术通过分析一类广义的曲线来研究任意能级上的动力学,这些曲线被称为野生伪全纯曲线。本项目涉及几何分析、辛拓扑和动力系统的界面研究。其核心思想是利用一类新定义的无限霍费尔-能量伪全纯曲线,即野生曲线,来研究任意维辛流形中给定能量面上的哈密顿流和一般三维流形上的某些保体积流。更具体地说,目的是研究这些曲线及其性质,并利用它们来建立三维大范围保容流动的非极小性。进一步的目的是研究这种野性曲线的一般渐近极限,并确定辛场理论是否允许将其推广到具有一般光滑边界的辛流形。这项研究的成功完成有可能解决保体积Gottschalk猜想,广泛推广辛场理论,并可能产生关于低维微分拓扑的关键新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Fish其他文献

Poster 140 Electrical Injury and PTSD: A Deficit in Delayed Recall
  • DOI:
    10.1016/j.apmr.2011.07.167
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alisa Grigorovich;Jana Atkins;Larry Leach;Manuel Gomez;Joel Fish
  • 通讯作者:
    Joel Fish
Exploring the impact of anterior chest wall scars from implantable venous ports in adolescent survivors of cancer
探索植入式静脉港前胸壁疤痕对青少年癌症幸存者的影响
  • DOI:
    10.1002/pbc.29832
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    B. Connolly;A. Amirabadi;Simal Goman;Adri;Joel Fish;Natasha Alexander;P. Nathan
  • 通讯作者:
    P. Nathan

Joel Fish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Fish', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802927
  • 财政年份:
    2008
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Fellowship

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
  • 批准号:
    2338233
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
  • 批准号:
    2305735
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 11.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了