Collaborative Research: Advances in High-Frequency Magnetics for High-Efficiency, High-Density Power Electronic Systems
合作研究:高效率、高密度电力电子系统的高频磁学进展
基本信息
- 批准号:1610719
- 负责人:
- 金额:$ 26.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power electronics - electronic circuits that process energy - plays a key enabling role in a wide range of energy-efficient and renewable-energy technologies, and is also essential for powering other types of electronic systems. Smaller, more efficient, and less costly power electronics are critical to continued improvement of all these systems. Magnetic components such as inductors and transformers are typically the largest and usually lossy components in power electronics. Moreover, limitations in magnetic component design have been a major obstacle to realizing substantial improvements in miniaturization. To date, advances in power electronics have been enabled by increases in operating frequency, but limitations in magnetics technologies are inhibiting continuation of this trend. This project will develop design methods for high-frequency magnetics, mitigating these limitations, and will apply them to develop miniaturized, high-efficiency power electronics. The results will be useful across many different applications in electronic systems, efficient end-use of energy, and renewable energy systems, reducing their cost and improving their energy efficiency. The project will engage undergraduate and graduate students in the research, strengthening their skills in this important area. Participation of under-represented groups will be sought, and research participants will be carefully mentored. An ongoing research collaboration between Dartmouth and MIT will be strengthened and extended to include educational activities, including outreach to K-12 students to promote science and engineering.A key route to improvement of power electronics is the development of converters that operate efficiently at substantially higher switching frequencies than are presently used (e.g., in the High-Frequency, or HF, range of 3-30 MHz). Higher switching frequencies result in reduced energy storage requirements of the passive components (including magnetic components), which can be leveraged to reduce size and cost of power electronics, and to improve performance (e.g., higher bandwidth.) Joint advances in high-frequency power circuits and magnetic component design are needed to realize these benefits. Advances have been hindered both by a lack of performance data for HF magnetic materials and a poor understanding of how to design power magnetics for HF. Recent work has revealed that some commercial low-permeability magnetic materials have high performance in this frequency range, enabling substantial miniaturization of power electronics (e.g., factors of 2-10 reduction in overall size) if magnetic component and circuit designs leveraging these materials can be developed. The proposed research program will develop design methods for power magnetic components at HF frequencies utilizing low-permeability materials, and will further investigate how these components can best be applied to realize high-density, high-efficiency power electronics. The research will develop design techniques for achieving reduced core and winding losses with low permeability materials; investigate optimized core and winding geometries; create improved models and designs for high-frequency windings, and develop new self-shielding HF magnetic structures. Moreover, power converter designs that can effectively leverage the capabilities of these HF magnetic components will be investigated and applied to realize miniaturized power electronics operating at HF.
电力电子-处理能量的电子电路-在广泛的节能和可再生能源技术中发挥着关键的促进作用,对于为其他类型的电子系统供电也至关重要。 更小、更高效、成本更低的电力电子设备对于所有这些系统的持续改进至关重要。电感器和变压器等磁性元件通常是电力电子设备中最大且通常有损耗的元件。 此外,磁性部件设计中的限制已经成为实现小型化的实质性改进的主要障碍。 到目前为止,电力电子技术的进步已经通过提高工作频率而得以实现,但磁性技术的局限性阻碍了这一趋势的继续。 该项目将开发高频磁性元件的设计方法,减轻这些限制,并将其应用于开发小型化,高效率的电力电子产品。 研究结果将在电子系统、能源的高效终端使用和可再生能源系统的许多不同应用中发挥作用,降低成本并提高能效。 该项目将吸引本科生和研究生参与研究,加强他们在这一重要领域的技能。 将寻求代表性不足的群体的参与,并将认真指导研究参与者。 达特茅斯和麻省理工学院之间正在进行的研究合作将得到加强和扩展,包括教育活动,包括推广到K-12学生,以促进科学和工程。改进电力电子技术的一个关键途径是开发转换器,其在比目前使用的高得多的开关频率下有效地工作(例如,在3-30 MHz的高频或HF范围内)。更高的开关频率导致无源部件(包括磁性部件)的能量存储要求降低,这可以被利用来减小功率电子器件的尺寸和成本,并且提高性能(例如,更高的带宽)。 要实现这些好处,需要在高频功率电路和磁性元件设计方面取得共同进步。 由于缺乏高频磁性材料的性能数据,以及对如何设计高频功率磁性材料的理解不足,阻碍了进展。 最近的工作已经揭示,一些商业低磁导率磁性材料在该频率范围内具有高性能,使得能够实现电力电子器件的实质小型化(例如,总尺寸减小2-10倍),如果可以开发利用这些材料的磁性部件和电路设计的话。 拟议的研究计划将开发利用低磁导率材料的高频功率磁性元件的设计方法,并将进一步研究如何最好地应用这些元件来实现高密度,高效率的电力电子器件。 该研究将开发设计技术,以实现低磁导率材料降低磁芯和绕组损耗;研究优化的磁芯和绕组几何形状;创建改进的高频绕组模型和设计,并开发新的自屏蔽高频磁结构。 此外,功率转换器的设计,可以有效地利用这些高频磁性元件的能力将被调查和应用,以实现小型化的电力电子工作在高频。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Sullivan其他文献
Herbal Medicine Among the Lumbee Indians
伦比印第安人的草药
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
J. Kirkland;Holly F. Matthews;Charles Sullivan;Karen Baldwin - 通讯作者:
Karen Baldwin
Doctors and Root Doctors: Patients Who Use Both
医生和根医生:同时使用两者的患者
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
J. Kirkland;Holly F. Matthews;Charles Sullivan;Karen Baldwin - 通讯作者:
Karen Baldwin
Radiation exposure from diagnostic imaging in young patients with testicular cancer
年轻睾丸癌患者诊断成像的辐射暴露
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:5.9
- 作者:
Charles Sullivan;Keelin Murphy;Patrick D. McLaughlin;M. Twomey;Kevin O'Regan;Derek G. Power;Michael M. Maher;Owen J. O'Connor - 通讯作者:
Owen J. O'Connor
Chemoimmunotherapy of sarcomatoid renal cell carcinoma.
肉瘤样肾细胞癌的化学免疫治疗。
- DOI:
10.1002/mpo.2950050103 - 发表时间:
1978 - 期刊:
- 影响因子:0
- 作者:
A. Krutchik;Charles Sullivan;J. Sinkovics;A. Ayala - 通讯作者:
A. Ayala
Foreword to the special issue on autonomous grasping and manipulation
- DOI:
10.1007/s10514-013-9367-7 - 发表时间:
2013-09-24 - 期刊:
- 影响因子:4.300
- 作者:
Douglas Hackett;James Pippine;Adam Watson;Charles Sullivan;Gill Pratt - 通讯作者:
Gill Pratt
Charles Sullivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Sullivan', 18)}}的其他基金
Phase I IUCRC at Dartmouth College: Center for Integrated Power Management Circuits and Systems - Power One IC
达特茅斯学院 IUCRC 第一阶段:集成电源管理电路和系统中心 - Power One IC
- 批准号:
1822140 - 财政年份:2018
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
High-efficiency self-resonant transmitters and receivers for wireless power transfer
用于无线功率传输的高效自谐振发射器和接收器
- 批准号:
1507773 - 财政年份:2015
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Power One IC -- NSF Center on Integrated Power Management Circuits and Systems
合作研究:规划资助:I/UCRC for Power One IC -- NSF 集成电源管理电路和系统中心
- 批准号:
1464588 - 财政年份:2015
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: Stacked Controlled-Cell Power Conversion Architecture for Grid-Connected Photovoltaic Systems
合作研究:用于并网光伏系统的堆叠式控制电池功率转换架构
- 批准号:
0925280 - 财政年份:2009
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CAREER: Advanced Microfabricated Magnetics for Power and RF Applications
职业:用于电源和射频应用的先进微加工磁性材料
- 批准号:
9875204 - 财政年份:1999
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Antibodies as Tools in Cell Biology
抗体作为细胞生物学的工具
- 批准号:
9550918 - 财政年份:1995
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Introduction of Ultracentrifugation into the Cell Biology Curriculum
将超速离心引入细胞生物学课程
- 批准号:
9151342 - 财政年份:1991
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311059 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Interdisciplinary Clinical Advances and Research Excellence in TMDs (ICARE 4 TMDs) Collaborative
TMD 跨学科临床进展和卓越研究 (ICARE 4 TMD) 协作
- 批准号:
10829180 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
- 批准号:
2210013 - 财政年份:2022
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
- 批准号:
2210018 - 财政年份:2022
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: New Advances to Enable Multi-Messenger Neutrino Astrophysics with the Radio Neutrino Observatory in Greenland
合作研究:WoU-MMA:与格陵兰岛射电中微子天文台实现多信使中微子天体物理学的新进展
- 批准号:
2112352 - 财政年份:2021
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: CDS&E: Advances in closure modeling for turbulent flows with finite-sized particles informed by massive simulations on heterogeneous architec
CDS
- 批准号:
1953298 - 财政年份:2020
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: CDS&E: Advances in closure modeling for turbulent flows with finite-sized particles informed by massive simulations on heterogeneous architec
CDS
- 批准号:
1953190 - 财政年份:2020
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: CDS&E: Advances in closure modeling for turbulent flows with finite-sized particles informed by massive simulations on heterogeneous architec
CDS
- 批准号:
1953186 - 财政年份:2020
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant