CAREER: Advanced Microfabricated Magnetics for Power and RF Applications

职业:用于电源和射频应用的先进微加工磁性材料

基本信息

  • 批准号:
    9875204
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

9875204SullivanThrough the combined efforts of researchers and manufacturers all over the world, the capabilities of microprocessors continue to grow exponentially as predicted by Gordon Moore in 1965. Progress in numerous fields is on track to continue to uphold Moore's Law. But a new obstacle looms: powering very high-current, very low-voltage processors. The difficulties in delivering this power with sufficient stability and fast enough response time have earned the industry nickname the Power Wall. This project will develop innovations in microfabricated magnetic components that will allow microprocessor power delivery with performance well beyond the capabilities of other techniques now being studied, and will lay the foundations for advanced magnetics in a wide range of applications.Future microprocessors will typically require supply currents on the order of 100 A. The power requirement is mitigated by scaling supply voltages to lower levels, but the resulting low impedance makes stable power delivery more difficult. A small-size, fast-response power converter will need to be located immediately adjacent to the processor. Portable, battery powered systems impose even more stringent efficiency and size constraints. Improved inductors are critical for meeting these requirements. State-of-the-art inductors remain the largest and most expensive components in power converters, and they limit the efficiency and response time. A new technology-such as microfabrication-must be applied. But existing microfabricated magnetics exhibit poor efficiency, poor power density, or both.This project will introduce several innovative approaches that will dramatically boost performance. New magnetic materials will achieve low hysteresis and eddy-current losses, yet allow operation with high flux density in the 5-20 MHz range. These properties will be obtained by using composite materials comprising nanoscale particles of magnetic metal in a ceramic matrix, deposited by vacuum evaporation. In these materials, the ceramic will insulate the particles to prevent eddy currents, while the ultrafine particles will reduce coercivity and hysteresis loss. In addition, a newly proposed fabrication process will use anisotropic silicon etching and other microfabrication techniques to form inductors in a configuration optimized for low-impedance high-current applications. The result will be higher power density and efficiency with a streamlined process flow that will simplify magnetic material deposition. Inductors using the new material and process will be fabricated and tested, and applications will be developed in cooperation with industrial partners including Intel Corp. and Volterra, who will collaborate on implementation of circuits and provide financial support.The new magnetics technology will have a broad range of applications including power conversion in other systems and inductors for RF communications circuits; the new magnetic materials are expected to have good properties up to frequencies on the order of 1 GHz.The project is designed to capture synergy between research and education. Students including first-year undergraduates, upper-level undergraduates, and Ph.D. candidates will be actively involved in the research program. To meet the significant challenges associated with providing undergraduates with a meaningful research experience, successful, proven programs in undergraduate research will be combined with refinements in student teaming. The research program will be structured to provide opportunities for useful and satisfying work at appropriate skill levels for undergraduates, by taking advantage of the unique opportunities afforded by work in microfabrication.Outreach and curriculum innovation will help develop the next generation of engineers. Outreach activities involving high-school and junior-high-school students will attract them to engineering; courses that let undergraduates sample the fun of real-world problem solving will inspire them to continue; and a streamlined class in power electronics and electromechanical energy conversion based on modem applications will encourage them to study this critical area.***
9875204 Sullivan通过世界各地研究人员和制造商的共同努力,微处理器的能力继续呈指数级增长,正如戈登·摩尔(Gordon Moore)在1965年所预测的那样。 许多领域的进展都在继续坚持摩尔定律。 但一个新的障碍隐现:为非常高电流、非常低电压的处理器供电。 在提供足够的稳定性和足够快的响应时间的能力方面存在的困难为业界赢得了Power Wall的绰号。 该项目将在微加工磁性元件方面进行创新,使微处理器的功率传输性能远远超过目前正在研究的其他技术的能力,并将为广泛应用的先进磁性技术奠定基础。未来的微处理器通常需要100 A量级的电源电流。通过将电源电压缩放到较低水平来减轻功率要求,但由此产生的低阻抗使得稳定的功率输送更加困难。 一个小尺寸、快速响应的电源转换器需要紧邻处理器放置。 便携式电池供电系统对效率和尺寸的限制更加严格。 改进的电感器对于满足这些要求至关重要。 最先进的电感器仍然是功率转换器中最大和最昂贵的组件,它们限制了效率和响应时间。 必须采用一种新技术,如微加工技术。 但是现有的微制造磁性材料表现出效率低,功率密度低,或者两者兼而有之。本项目将介绍几种创新的方法,将大大提高性能。 新的磁性材料将实现低磁滞和涡流损耗,但允许在5-20 MHz范围内以高磁通密度运行。 这些特性将通过使用复合材料来获得,该复合材料包括通过真空蒸发沉积的在陶瓷基质中的磁性金属的纳米级颗粒。 在这些材料中,陶瓷将使颗粒绝缘以防止涡流,而超细颗粒将降低介电性和磁滞损耗。 此外,新提出的制造工艺将使用各向异性硅蚀刻和其他微加工技术来形成电感器,其配置针对低阻抗高电流应用进行了优化。 其结果将是更高的功率密度和效率,简化的工艺流程将简化磁性材料沉积。 使用新材料和工艺的电感器将被制造和测试,并将与包括英特尔公司和沃尔泰拉在内的工业合作伙伴合作开发应用程序,他们将在电路实施方面进行合作并提供资金支持。新的磁性技术将有广泛的应用,包括其他系统中的功率转换和RF通信电路中的电感器;这种新的磁性材料预计在高达1 GHz的频率下具有良好的性能。2该项目旨在实现研究和教育之间的协同作用。 学生包括一年级本科生、高级本科生和博士生。候选人将积极参与研究计划。 为了应对与为本科生提供有意义的研究经验相关的重大挑战,成功的,经过验证的本科生研究项目将与学生团队的改进相结合。 该研究计划的结构将提供有用的和满意的工作在适当的技能水平为本科生的机会,通过利用在微细加工工作所提供的独特的机会。拓展和课程创新将有助于开发下一代工程师。 涉及高中和初中学生的推广活动将吸引他们进入工程领域;让本科生体验解决现实问题的乐趣的课程将激励他们继续学习;基于现代应用的电力电子和机电能量转换的精简课程将鼓励他们学习这一关键领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Sullivan其他文献

Herbal Medicine Among the Lumbee Indians
伦比印第安人的草药
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kirkland;Holly F. Matthews;Charles Sullivan;Karen Baldwin
  • 通讯作者:
    Karen Baldwin
Doctors and Root Doctors: Patients Who Use Both
医生和根医生:同时使用两者的患者
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kirkland;Holly F. Matthews;Charles Sullivan;Karen Baldwin
  • 通讯作者:
    Karen Baldwin
Radiation exposure from diagnostic imaging in young patients with testicular cancer
年轻睾丸癌患者诊断成像的辐射暴露
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Charles Sullivan;Keelin Murphy;Patrick D. McLaughlin;M. Twomey;Kevin O'Regan;Derek G. Power;Michael M. Maher;Owen J. O'Connor
  • 通讯作者:
    Owen J. O'Connor
Chemoimmunotherapy of sarcomatoid renal cell carcinoma.
肉瘤样肾细胞癌的化学免疫治疗。
  • DOI:
    10.1002/mpo.2950050103
  • 发表时间:
    1978
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Krutchik;Charles Sullivan;J. Sinkovics;A. Ayala
  • 通讯作者:
    A. Ayala
Foreword to the special issue on autonomous grasping and manipulation
  • DOI:
    10.1007/s10514-013-9367-7
  • 发表时间:
    2013-09-24
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Douglas Hackett;James Pippine;Adam Watson;Charles Sullivan;Gill Pratt
  • 通讯作者:
    Gill Pratt

Charles Sullivan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Sullivan', 18)}}的其他基金

Phase I IUCRC at Dartmouth College: Center for Integrated Power Management Circuits and Systems - Power One IC
达特茅斯学院 IUCRC 第一阶段:集成电源管理电路和系统中心 - Power One IC
  • 批准号:
    1822140
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advances in High-Frequency Magnetics for High-Efficiency, High-Density Power Electronic Systems
合作研究:高效率、高密度电力电子系统的高频磁学进展
  • 批准号:
    1610719
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
High-efficiency self-resonant transmitters and receivers for wireless power transfer
用于无线功率传输的高效自谐振发射器和接收器
  • 批准号:
    1507773
  • 财政年份:
    2015
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Power One IC -- NSF Center on Integrated Power Management Circuits and Systems
合作研究:规划资助:I/UCRC for Power One IC -- NSF 集成电源管理电路和系统中心
  • 批准号:
    1464588
  • 财政年份:
    2015
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Stacked Controlled-Cell Power Conversion Architecture for Grid-Connected Photovoltaic Systems
合作研究:用于并网光伏系统的堆叠式控制电池功率转换架构
  • 批准号:
    0925280
  • 财政年份:
    2009
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Antibodies as Tools in Cell Biology
抗体作为细胞生物学的工具
  • 批准号:
    9550918
  • 财政年份:
    1995
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Introduction of Ultracentrifugation into the Cell Biology Curriculum
将超速离心引入细胞生物学课程
  • 批准号:
    9151342
  • 财政年份:
    1991
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
  • 批准号:
    2332143
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Discovery Projects
Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
  • 批准号:
    24K17761
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Induction Melt Incremental Thermoforming of Advanced Thermoplastic Composites
先进热塑性复合材料的感应熔融增量热成型
  • 批准号:
    EP/X02766X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了