COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration

合作研究:数据驱动的可再生能源发电调度风险规避模型和算法

基本信息

  • 批准号:
    1610935
  • 负责人:
  • 金额:
    $ 19.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Renewable energy has been increasingly penetrating into the power grid system during the past years due to its contribution toward cleaner and lower-polluting American energy. Meanwhile, however, its intermittent nature brings challenges to power system operators. One challenging problem is how to derive a cost-effective and reliable power generation scheduling for thermal units in a short time to accommodate renewable generation uncertainties. The other outstanding question is how the data collected by the renewable facilities and intelligent devices can be transformed into valuable information and actionable insights in the decision-making process. To help address these challenges, this project aims to explore innovative data-driven optimization models and develop corresponding intelligent algorithms, as well as the implementation of the algorithms in high-performance computing facilities, to achieve cost-effective and robust daily power system operations. If successful, the proposed innovative approaches can be implemented in the industry in a short time and help improve current operations practices. The results of research outcomes will be incorporated into course works, which will train students to utilize cutting edge data-driven optimization methods to solve upfront power system problems with renewable energy integration. Educational activities also include outreach to K-12 students to promote science and engineering and to under-represented minorities in all aspects of this research effort. The proposed creative approach integrates statistical and optimization methods to derive innovative decision-making under uncertainty models for optimal power flow and unit commitment problems incorporating demand response and renewable energy. It provides one of the first studies on data-driven optimization addressing distributional ambiguity for power system operations. Starting from a given set of historical data, a confidence set for the true unknown distribution is constructed and accordingly data-driven risk-averse optimization models are developed for both system operators and market participants. Besides ensuring system robustness, the advantage of this approach is that the conservatism of the proposed model is adjustable based on the amount of historical data and eventually vanishes as the size of historical data goes to infinity. Also, the proposed advanced techniques in strengthening the formulation by exploring the problem structure and decomposition algorithms implementable at high-performance computing facilities can help improve the computational efficiency to solve the derived models. Finally, integration of innovative data-driven optimization models and development of efficient algorithms will enrich the tool set and advance the cutting edge technology to solve power generation scheduling problems under uncertainty.
由于可再生能源对清洁低污染的美国能源的贡献,在过去几年里,可再生能源越来越多地渗透到电网系统中。但与此同时,它的间歇性也给电力系统运营商带来了挑战。一个具有挑战性的问题是如何在短时间内制定一个经济可靠的火电机组发电计划,以适应可再生能源发电的不确定性。另一个突出的问题是,如何将可再生能源设施和智能设备收集的数据转化为决策过程中有价值的信息和可操作的见解。为了帮助解决这些挑战,本项目旨在探索创新的数据驱动优化模型,开发相应的智能算法,并在高性能计算设施中实现算法,以实现成本效益和稳健的日常电力系统运行。如果成功,所提出的创新方法可以在短时间内在行业中实施,并有助于改善当前的操作实践。研究成果将纳入课程作业,训练学生利用尖端的数据驱动优化方法解决可再生能源整合的前期电力系统问题。教育活动还包括向K-12学生推广科学和工程,并在这一研究工作的各个方面向代表性不足的少数民族伸出援手。该方法将统计和优化方法相结合,在不确定模型下推导出包含需求响应和可再生能源的最优潮流和机组承诺问题的创新决策。它提供了数据驱动优化解决电力系统运行中的分布模糊问题的首批研究之一。从给定的一组历史数据出发,构建了真实未知分布的置信集,并相应地为系统运营商和市场参与者建立了数据驱动的风险规避优化模型。除了确保系统的鲁棒性外,该方法的优点是所提出模型的保守性可以根据历史数据的数量进行调整,并最终随着历史数据的大小趋于无穷大而消失。此外,通过探索可在高性能计算设备上实现的问题结构和分解算法,提出了加强公式的先进技术,有助于提高求解衍生模型的计算效率。最后,整合创新的数据驱动优化模型和开发高效算法,将丰富工具集,推进前沿技术,以解决不确定条件下的发电调度问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chaoyue Zhao其他文献

Investigation on variation mechanisms of ash fusion and viscosity of high calcium-iron coal by coal blending
配煤高钙铁煤灰熔融及粘度变化机制研究
  • DOI:
    10.1016/j.fuel.2022.126663
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wei Zhao;Fenghai Li;Mingjie Ma;Chaoyue Zhao;Yong Wang;Ziqiang Yang;Xujing Zhang;Yitian Fang
  • 通讯作者:
    Yitian Fang
Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster.
四价 COVID-19 疫苗加强剂增强了对 SARS-CoV-2 变体 BA.2.86 和 XBB 亚系的中和作用。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    30.3
  • 作者:
    Xun Wang;Shujun Jiang;Wentai Ma;Xiangnan Li;Kaifeng Wei;Faren Xie;Chaoyue Zhao;Xiaoyu Zhao;Shidi Wang;Chen Li;Rui Qiao;Yuchen Cui;Yanjia Chen;Jiayan Li;Guonan Cai;Changyi Liu;Jizhen Yu;Jixi Li;Zixin Hu;Wenhong Zhang;Shibo Jiang;Mingkun Li;Yanliang Zhang;Pengfei Wang
  • 通讯作者:
    Pengfei Wang
Dedifferentiation of vascular smooth muscle cells upon vessel injury
血管平滑肌细胞在血管损伤时的去分化
  • DOI:
    10.1016/j.intimp.2024.113691
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Chaoyue Zhao;Jian Shen;Yunrui Lu;Hui Ni;Meixiang Xiang;Yao Xie
  • 通讯作者:
    Yao Xie
N-Doped Carbon Interior-Modified Mesoporous Silica-Confined Nickel Nanoclusters for Stereoselective Hydrogenation
用于立体选择性氢化的氮掺杂碳内部改性介孔二氧化硅限制的镍纳米团簇
  • DOI:
    10.1021/acscatal.2c04794
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Yu Shu;Xiaoyun Song;Fujun Lan;Chaoyue Zhao;Qingxin Guan;Wei Li
  • 通讯作者:
    Wei Li
Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition
甘蔗渣灰融合行为及其污泥添加改性
  • DOI:
    10.1016/j.energy.2022.123912
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Fenghai Li;Chaoyue Zhao;Hongli Fan;Meiling Xu;Qianqian Guo;Yang Li;Lishun Wu;Tao Wang;Yitian Fang
  • 通讯作者:
    Yitian Fang

Chaoyue Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chaoyue Zhao', 18)}}的其他基金

CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Power System Flexibility: Metric, Assessment, and Algorithm
合作研究:电力系统灵活性:度量、评估和算法
  • 批准号:
    2046243
  • 财政年份:
    2021
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration
合作研究:数据驱动的可再生能源发电调度风险规避模型和算法
  • 批准号:
    2037539
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Power System Resilience via Data-Driven Optimization
协作研究:通过数据驱动优化增强电力系统的弹性
  • 批准号:
    2037540
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Power System Resilience via Data-Driven Optimization
协作研究:通过数据驱动优化增强电力系统的弹性
  • 批准号:
    1662589
  • 财政年份:
    2017
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了