Collaborative Research: Power System Flexibility: Metric, Assessment, and Algorithm

合作研究:电力系统灵活性:度量、评估和算法

基本信息

  • 批准号:
    2046243
  • 负责人:
  • 金额:
    $ 24.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This NSF project aims to establish critical metrics and develop a comprehensive evaluation framework to assess the flexibility of power systems. The project will bring transformative change to the power industry by supporting practitioners and researchers to better understand and improve power system flexibility, which is especially crucial due to the volatility and unpredictability of net loads intensified by the increasing penetration of renewable energy. The proposed work includes i) defining metrics to describe complicated flexibility information, ii) developing a unified mathematical modeling framework with various underlying modeling structures, and iii) designing broadly applicable, efficient, and scalable solution approaches for different metric or application combinations. The intellectual merits of the project include enriching the understanding of system flexibility from different perspectives, enabling the comparison of flexibility across power systems, and providing a safety and resilience enhancement direction for power system planning and operations. The broader impacts of the project include advancing the theoretical foundations in the interdisciplinary field of optimization and artificial intelligence as well as applying cutting-edge learning techniques into traditional engineering fields.The study will address challenges in the existing literature by proposing innovative scientific methods in three aspects. (1) The employment of multiple flexibility metrics satisfies the needs of investigating flexibility on individual buses and the whole system, while a single metric is not able to reveal enough information on the high dimensional feasible regions of net loads. (2) The flexibility metric assessment models that involve nonlinearity, discreteness, and nonconvexity, are significantly harder to solve compared to their linear counterparts. To handle the complex cases, the project will use a wide range of modeling techniques, including mixed-integer, two-stage and multistage formulations to reduce the complexity of measuring flexibility. (3) The proposed hybrid mixed-integer programming and deep learning algorithm will significantly improve the efficiency to obtain critical information for flexibility assessment in a time-critical environment and meet the requirement of operations practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在建立关键指标,并开发一个全面的评估框架,以评估电力系统的灵活性。该项目将通过支持从业人员和研究人员更好地了解和提高电力系统灵活性,为电力行业带来变革性变化,这一点尤其重要,因为可再生能源的渗透率增加加剧了净负荷的波动性和不可预测性。建议的工作包括i)定义度量来描述复杂的柔性信息,ii)开发一个统一的数学建模框架与各种底层建模结构,和iii)设计广泛适用的,高效的,可扩展的解决方案方法,为不同的度量或应用组合。该项目的智力优势包括从不同角度丰富对系统灵活性的理解,使跨电力系统的灵活性进行比较,并为电力系统规划和运营提供安全和弹性增强方向。该项目的更广泛影响包括推进优化和人工智能跨学科领域的理论基础,以及将尖端学习技术应用于传统工程领域。该研究将通过提出三个方面的创新科学方法来应对现有文献中的挑战。(1)采用多个柔性指标可以满足研究单个节点和整个系统柔性的需要,而单一的柔性指标不能充分揭示净负荷的高维可行域信息。(2)柔性度量评估模型涉及非线性、离散性和非凸性,与线性模型相比,其求解难度要大得多。为了处理复杂的情况,该项目将使用广泛的建模技术,包括混合整数,两阶段和多阶段配方,以降低测量灵活性的复杂性。(3)提出的混合整数规划和深度学习算法将显著提高在时间紧迫的环境中获取关键信息以进行灵活性评估的效率,并满足运营实践的要求。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexibility Management in Economic Dispatch With Dynamic Automatic Generation Control
  • DOI:
    10.1109/tpwrs.2021.3103128
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Lei Fan;Chaoyue Zhao;Guangyuan Zhang;Qiuhua Huang
  • 通讯作者:
    Lei Fan;Chaoyue Zhao;Guangyuan Zhang;Qiuhua Huang
Towards Optimal Pricing of Demand Response - A Nonparametric Constrained Policy Optimization Approach
Efficient Optimal Power Flow Flexibility Assessment: A Machine Learning Approach
高效的最佳潮流灵活性评估:机器学习方法
Distributionally Robust Unit Commitment With Flexible Generation Resources Considering Renewable Energy Uncertainty
  • DOI:
    10.1109/tpwrs.2022.3149506
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Siyuan Wang;Chaoyue Zhao;Lei Fan;R. Bo
  • 通讯作者:
    Siyuan Wang;Chaoyue Zhao;Lei Fan;R. Bo
Solving Non-linear Optimization Problem in Engineering by Model-Informed Generative Adversarial Network (MI-GAN)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chaoyue Zhao其他文献

Investigation on variation mechanisms of ash fusion and viscosity of high calcium-iron coal by coal blending
配煤高钙铁煤灰熔融及粘度变化机制研究
  • DOI:
    10.1016/j.fuel.2022.126663
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wei Zhao;Fenghai Li;Mingjie Ma;Chaoyue Zhao;Yong Wang;Ziqiang Yang;Xujing Zhang;Yitian Fang
  • 通讯作者:
    Yitian Fang
Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster.
四价 COVID-19 疫苗加强剂增强了对 SARS-CoV-2 变体 BA.2.86 和 XBB 亚系的中和作用。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    30.3
  • 作者:
    Xun Wang;Shujun Jiang;Wentai Ma;Xiangnan Li;Kaifeng Wei;Faren Xie;Chaoyue Zhao;Xiaoyu Zhao;Shidi Wang;Chen Li;Rui Qiao;Yuchen Cui;Yanjia Chen;Jiayan Li;Guonan Cai;Changyi Liu;Jizhen Yu;Jixi Li;Zixin Hu;Wenhong Zhang;Shibo Jiang;Mingkun Li;Yanliang Zhang;Pengfei Wang
  • 通讯作者:
    Pengfei Wang
Dedifferentiation of vascular smooth muscle cells upon vessel injury
血管平滑肌细胞在血管损伤时的去分化
  • DOI:
    10.1016/j.intimp.2024.113691
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Chaoyue Zhao;Jian Shen;Yunrui Lu;Hui Ni;Meixiang Xiang;Yao Xie
  • 通讯作者:
    Yao Xie
N-Doped Carbon Interior-Modified Mesoporous Silica-Confined Nickel Nanoclusters for Stereoselective Hydrogenation
用于立体选择性氢化的氮掺杂碳内部改性介孔二氧化硅限制的镍纳米团簇
  • DOI:
    10.1021/acscatal.2c04794
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Yu Shu;Xiaoyun Song;Fujun Lan;Chaoyue Zhao;Qingxin Guan;Wei Li
  • 通讯作者:
    Wei Li
Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition
甘蔗渣灰融合行为及其污泥添加改性
  • DOI:
    10.1016/j.energy.2022.123912
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Fenghai Li;Chaoyue Zhao;Hongli Fan;Meiling Xu;Qianqian Guo;Yang Li;Lishun Wu;Tao Wang;Yitian Fang
  • 通讯作者:
    Yitian Fang

Chaoyue Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chaoyue Zhao', 18)}}的其他基金

CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration
合作研究:数据驱动的可再生能源发电调度风险规避模型和算法
  • 批准号:
    2037539
  • 财政年份:
    2019
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Power System Resilience via Data-Driven Optimization
协作研究:通过数据驱动优化增强电力系统的弹性
  • 批准号:
    2037540
  • 财政年份:
    2019
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Power System Resilience via Data-Driven Optimization
协作研究:通过数据驱动优化增强电力系统的弹性
  • 批准号:
    1662589
  • 财政年份:
    2017
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration
合作研究:数据驱动的可再生能源发电调度风险规避模型和算法
  • 批准号:
    1610935
  • 财政年份:
    2016
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333951
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329063
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222097
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Electronic Analog & Hybrid Computing for Power & Energy Systems
合作研究:电子模拟
  • 批准号:
    2305431
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Electronic Analog & Hybrid Computing for Power & Energy Systems
合作研究:电子模拟
  • 批准号:
    2305432
  • 财政年份:
    2023
  • 资助金额:
    $ 24.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了