Geometric Flows and Almost Complex Geometry

几何流和几乎复杂的几何

基本信息

  • 批准号:
    1611797
  • 负责人:
  • 金额:
    $ 14.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The so-called almost complex structure is a fundamental notion in the study of even dimensional spaces in mathematics. The understanding of almost complex structure in dimension four is of major importance in the mathematical branch of Differential Geometry. This has also great impact on other subjects including Physics. The projects designed aim to use powerful tools from geometric analysis to study almost complex structure, which will lead to applications in string theory, algebraic geometry and complex geometry. The proposed research will have immediate beneficial effects to students in the principal investigator's home university. The geometry of 4-dimensional smooth and symplectic manifolds has witnessed very exciting achievements in the last several decades. Despite the great success, the full understanding of smooth topology of four manifolds and symplectic manifolds remains largely open. In the last several decades, profound progress has also been made in the Ricci flow, for example, the solution of Poincare conjecture and geometrization conjecture in three manifolds. In this project, the PI will focus on compact almost complex manifolds by using a new kind of geometric flows, which evolve an almost complex structure to a symplectic structure. One motivation is to understand precisely when a compact four manifold with an almost complex structure supports a symplectic structure. Inspired by the Hamilton-Perelman's theory in the Ricci flow, the PI intends to study these new geometric flows in a systematical way, such as the longtime behavior and formation of singularities.
所谓几乎复数结构是数学中研究偶数维空间的一个基本概念。对四维几乎复杂结构的理解在微分几何的数学分支中具有重要意义。这对包括物理在内的其他学科也产生了很大的影响。设计的项目旨在使用几何分析的强大工具来研究几乎复杂的结构,这将导致在弦论、代数几何和复杂几何中的应用。这项拟议的研究将立即对首席调查员所在大学的学生产生有益影响。在过去的几十年里,4维光滑辛流形的几何学取得了令人振奋的成就。尽管已经取得了很大的成功,但对四种流形和辛流形的光滑拓扑的充分理解在很大程度上是开放的。在过去的几十年里,Ricci流也取得了深刻的进展,例如在三个流形上求解Poincare猜想和几何化猜想。在这个项目中,PI将通过使用一种新的几何流来关注紧致的几乎复杂的流形,它将几乎复杂的结构演化为辛结构。一个动机是精确地理解具有几乎复杂结构的紧凑的四个流形何时支撑辛结构。受Ricci流中的Hamilton-Perelman理论的启发,PI打算系统地研究这些新的几何流,如奇点的长期行为和形成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiyong He其他文献

The Calabi Flow with Rough Initial Data
具有粗略初始数据的卡拉比流
Compactness of Kähler metrics with bounds on Ricci curvature and I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ma
Kähler 度量的紧凑性与 Ricci 曲率和 Idocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{文档}$${ma
Formation Isoforms II and V to PML Nuclear Body Promyelocytic Leukemia Protein ( PML ) Contribution of the C-terminal Regions of Cell Biology
PML 核体早幼粒细胞白血病蛋白 (PML) 的亚型 II 和 V 的形成 细胞生物学 C 末端区域的贡献
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunyun Geng;S. Monajembashi;Anwen Shao;D. Cui;Weiyong He;Zhongzhou Chen;P. Hemmerich;Jun Tang
  • 通讯作者:
    Jun Tang
Evolve nondegenerate two forms
进化出非简并的两种形式
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiyong He
  • 通讯作者:
    Weiyong He
Constant Scalar Curvature Equation and Regularity of Its Weak Solution
常标量曲率方程及其弱解的正则性

Weiyong He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiyong He', 18)}}的其他基金

Extremal metrics, the Calabi flow and related PDEs
极值度量、卡拉比流和相关偏微分方程
  • 批准号:
    1005392
  • 财政年份:
    2010
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Standard Grant

相似海外基金

Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
  • 批准号:
    EP/Y021479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
  • 批准号:
    EP/W005247/2
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
  • 批准号:
    NE/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Research Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
  • 批准号:
    2348273
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Standard Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
  • 批准号:
    2340121
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Continuing Grant
A reliable approach for the characterization of biologically-relevant cardiovascular flows
表征生物学相关心血管血流的可靠方法
  • 批准号:
    2908744
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Studentship
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
  • 批准号:
    2347416
  • 财政年份:
    2024
  • 资助金额:
    $ 14.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了