Generalized scissors congruence
广义剪刀同余
基本信息
- 批准号:1612037
- 负责人:
- 金额:$ 17.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of scissors congruence has two major influences. The first is purely geometric, asking which shapes can be cut up and rearranged into one another. For example, given 250 sq ft of carpet, is it always possible to carpet a 250 sq ft room with it? One may think that this depends on the shape of the room, but it actually does not: assuming that both the carpet and the room have straight sides, it is always possible. However, this is no longer true with three dimensions: if you have a 100 cu in box to fill with foam rubber and I give you 100 cu in of foam rubber, you may not be able to fill up the box because the rubber may be the wrong shape. Generalizing these problems to other dimensions and geometries is very difficult, and very little is known about the answers. The second influence is more philosophical: as mathematicians, we often address problems by "cutting" them up into smaller problems, solving each of the smaller problems and the reassembling the solutions. However, there is always an important last step: figuring out whether there is a unique way to reassemble a solution to the large problem, or whether there are many. The current project on scissors congruence addresses these issues simultaneously by constructing a framework for "cutting" and "pasting" together different kinds of "objects," be they shapes or mathematical objects. This framework allows us to analyze all such questions together and learn more about the difficulties that arise when reassembling solutions. In addition, it has applications in many different subfields of mathematics, including algebraic geometry, logic, number theory and category theory, producing a novel viewpoint from which to unify different problems.A scissors congruence problem is the problem of classifying certain objects (such as definable sets, varieties, or polytopes) up to decomposition and isomorphism. Using previously developed techniques for turning a scissors congruence problem into a spectrum, this project continues analyzing scissors congruence problems through the lens of stable homotopy theory. This project has three general objectives: (1) analyzing the Grothendieck ring of varieties using the higher homotopical information present in the scissors congruence spectrum, (2) extending results of Goncharov relating mixed Tate motives to spherical scissors congruence groups to scissors congruence spectra, and (3) exploring the possibility of using scissors congruence spectra for developing spectrum-valued motivic integration. By generalizing classical maps between scissors congruence problems to scissors congruence spectra we hope to produce new geometric and algebraic invariants which will extend understanding of these problems.
剪刀同余的研究有两个主要影响。第一个是纯粹的几何问题,询问哪些形状可以切割并重新排列成另一个形状。例如,给定250平方英尺的地毯,是否总是可以用它铺满250平方英尺的房间?有人可能会认为这取决于房间的形状,但实际上并非如此:假设地毯和房间都是直的,这总是可能的。然而,这在三维空间中就不成立了:如果你有一个100立方厘米的盒子要装满泡沫橡胶,我给你100立方厘米的泡沫橡胶,你可能无法装满这个盒子,因为橡胶的形状可能是错误的。将这些问题推广到其他维度和几何是非常困难的,而且我们对答案知之甚少。第二个影响更具有哲学意义:作为数学家,我们经常通过将问题“切割”成更小的问题,解决每个更小的问题,然后重新组合解决方案来解决问题。然而,总是有一个重要的最后一步:弄清楚是否有一个独特的方法来重新组合一个大问题的解决方案,或者是否有很多。目前关于剪刀一致性的项目通过构建一个框架来“剪切”和“粘贴”不同类型的“对象”,无论是形状还是数学对象,同时解决了这些问题。这个框架使我们能够一起分析所有这些问题,并更多地了解重新组合解决方案时出现的困难。此外,它还应用于数学的许多不同的子领域,包括代数几何、逻辑、数论和范畴论,产生了一种统一不同问题的新观点。剪刀同余问题是将某些对象(如可定义的集合、变种或多面体)分类到分解和同构的问题。利用先前开发的将剪刀同余问题转化为谱的技术,本项目继续通过稳定同伦理论的透镜分析剪刀同余问题。本项目有三个总体目标:(1)利用剪刀同余谱中的高同列信息分析品种的Grothendieck环;(2)将Goncharov关于混合Tate动机与球形剪刀同余群的结果推广到剪刀同余谱;(3)探索利用剪刀同余谱发展谱值动机积分的可能性。通过将剪刀同余问题之间的经典映射推广到剪刀同余谱,我们希望产生新的几何和代数不变量,从而扩展对这些问题的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inna Zakharevich其他文献
A prop structure on partitions
隔断上的支柱结构
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Coline Emprin;Dana Hunter;Muriel Livernet;Christine Vespa;Inna Zakharevich - 通讯作者:
Inna Zakharevich
Inna Zakharevich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inna Zakharevich', 18)}}的其他基金
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
- 批准号:
2052977 - 财政年份:2021
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
CAREER: Constructing K-Theoretic Invariants for Geometric Objects
职业:构建几何对象的 K 理论不变量
- 批准号:
1846767 - 财政年份:2019
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
相似海外基金
Theoretical study on stress concentration reduction of pin joints of scissors-type emergency bridge
剪式应急桥销轴应力集中减少理论研究
- 批准号:
23K13393 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tetherless Scissors Actuation Development for Cutting Soft Materials
用于切割软材料的无绳剪刀驱动开发
- 批准号:
565805-2021 - 财政年份:2021
- 资助金额:
$ 17.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Examination of brain activity during the execution of body deceitful Rock, Paper, Scissors after middle-aged and elderly people by portable near-infrared spectroscopy
便携式近红外光谱仪检测中老年人施行身体欺骗石头剪刀布时的大脑活动
- 批准号:
19K19904 - 财政年份:2019
- 资助金额:
$ 17.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Influence on seismic performance improvement of trussed scissors-type emergency bridge
桁架剪刀式应急桥抗震性能改善的影响
- 批准号:
18K13818 - 财政年份:2018
- 资助金额:
$ 17.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A molecular rock-paper-scissors game and the formation of spatiotemporal patterns
分子石头剪刀布游戏和时空模式的形成
- 批准号:
364775124 - 财政年份:2017
- 资助金额:
$ 17.68万 - 项目类别:
Research Fellowships
Earthquake safety of scissors-type of emergency bridge for rapid construction on disaster area
灾区快速施工剪刀式应急桥地震安全
- 批准号:
16H06840 - 财政年份:2016
- 资助金额:
$ 17.68万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
How scissors learn to glue: the catalysis of ligation by proteases
剪刀如何学会粘合:蛋白酶对连接的催化
- 批准号:
DP160100107 - 财政年份:2016
- 资助金额:
$ 17.68万 - 项目类别:
Discovery Projects
ABI Innovation: Engineering molecular scissors by computational design with experimental validation
ABI Innovation:通过计算设计和实验验证设计分子剪刀
- 批准号:
1262439 - 财政年份:2013
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Novel development and applications of the reagents for chemical scission of targetted proteins as chemical scissors
化学剪刀靶蛋白化学切割试剂的新开发及应用
- 批准号:
25650038 - 财政年份:2013
- 资助金额:
$ 17.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research