CAREER: Constructing K-Theoretic Invariants for Geometric Objects

职业:构建几何对象的 K 理论不变量

基本信息

  • 批准号:
    1846767
  • 负责人:
  • 金额:
    $ 44.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

A common approach to problem-solving is to split a problem into smaller sub-problems, solve each of the smaller problems, and assemble the answers into a solution to the original problem. This last step is often very difficult, as there are multiple ways of gluing the pieces of the solution together. The mathematical area of K-theory studies different ways of putting such solutions back together, as well as the relations behind differently-assembled pieces. The invariants constructed by K-theory can be found in many fields, from number theory to algebraic geometry to topology. This National Science Foundation award investigates novel connections between fields through a K-theoretic perspective, by studying how geometric objects, known as polytopes, varieties and manifolds, can be cut apart and reassembled. By analyzing these geometric cut-and-paste problems using traditional K-theoretic techniques found in algebra, the project hopes to shed light on longstanding conjectures relating geometry and algebra. The PI also intends to establish a K-12 math circle available to all local children, and the organization of a district-wide math club for 3-5 graders. Currently, math clubs at schools are heavily dependent on parental involvement and are therefore only available when interested parents have students at the school; organizing such clubs under a central organization would help with institutional memory and make it available to more students. The research project consists of three parts. The first is an in-depth exploration of the scissors congruence of polytopes as it relates to the algebraic K-theory of the real and complex numbers. Using Rognes' stable rank filtration the PI and collaborator Jonathan Campbell intend to construct maps between the filtered parts of Rognes' filtration and the derived scissors congruence of polytopes; the long-term goal of this project is to investigate the connections between scissors congruence groups and the Beilinson--Soule conjecture. The second part of this project investigates the construction of derived motivic measures on the Grothendieck spectrum of varieties. There are two main flavors of motivic measure: the cohomological measures, which involve structures on the cohomology of the variety, and the Hermitian measures, which involve enriching the Euler number. These measures have proven extremely fruitful in studying the Grothendieck ring of varieties; the project proposes to lift these to the Grothendieck spectrum of varieties and use them to study the higher invariants of cut-and-paste problems on varieties. The cohomological project is joint work with Jonathan Campbell and Jesse Wolfson; the Hermitian project is joint with Kirsten Wickelgren. The third part of this project is an investigation of "squares K-theory", which uses four-term (instead of three-term) relations. Such relations---for example, the principle of inclusion-exclusion [P] + [Q] = [P u Q] + [P n Q]---appear frequently in geometric cut-and-paste problems such as SK-invariants, Bittner's presentation of the Grothendieck ring of varieties, and the definitions of McMullen's polytope algebra. The project proposes to extend the definition of K-theory to such relations, thus allowing the construction of higher derived invariants for these (and similar) problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
解决问题的一种常见方法是将问题分解为更小的子问题,解决每个更小的问题,并将答案组合成原始问题的解决方案。 最后一步通常非常困难,因为有多种方法可以将解决方案的各个部分粘合在一起。 K理论的数学领域研究将这些解重新组合在一起的不同方法,以及不同组合件背后的关系。 由K-理论构造的不变量可以在许多领域中找到,从数论到代数几何到拓扑学。 这个国家科学基金会奖项通过K理论的视角,通过研究几何对象(称为多面体、簇和流形)如何被分割和重新组装,来研究场之间的新颖联系。 通过使用代数中的传统K理论技术分析这些几何剪切和粘贴问题,该项目希望揭示与几何和代数相关的长期存在的问题。 PI还打算为所有当地儿童建立一个K-12数学圈,并为3-5年级学生组织一个全区数学俱乐部。 目前,学校的数学俱乐部在很大程度上依赖于家长的参与,因此只有当感兴趣的家长在学校有学生时才能参加;在中央组织下组织这样的俱乐部将有助于机构记忆,并使更多的学生可以参加。 本研究项目由三部分组成。第一个是深入探索的剪同余多面体,因为它涉及到代数K理论的真实的和复数。 利用罗涅尼斯的稳定秩过滤,PI和合作者Jonathan坎贝尔打算在罗涅尼斯过滤的过滤部分和导出的多面体的剪刀同余之间构建映射;该项目的长期目标是研究剪刀同余群和Beilinson-Soule猜想之间的联系。 本项目的第二部分研究衍生动机措施的Grothendieck频谱品种的建设。 动机测度主要有两种类型:上同调测度(涉及簇的上同调结构)和埃尔米特测度(涉及丰富欧拉数)。 事实证明,这些措施在研究Grothendieck品种环方面非常富有成效;该项目建议将这些提升到Grothendieck品种谱中,并使用它们来研究品种剪切粘贴问题的更高不变量。 上同调项目是与乔纳森坎贝尔和杰西沃尔夫森联合工作;埃尔米特项目是与克尔斯滕Wickelgren联合。 这个项目的第三部分是“平方K理论”的调查,它使用四项(而不是三项)的关系。 这样的关系-例如,原则的包容排除[P] + [Q] = [P u Q] + [P n Q]-经常出现在几何剪切和粘贴问题,如SK-不变,比特纳的介绍Grothendieck环的品种,和定义的麦克马伦的多面体代数。 该项目建议将K理论的定义扩展到这些关系,从而允许为这些(和类似)问题构建更高的派生不变量。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compactly supported A1 -Euler characteristic and the Hochschild complex
紧支持 A1 -欧拉特征和 Hochschild 复形
  • DOI:
    10.1016/j.topol.2022.108108
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Arcila-Maya, Niny;Bethea, Candace;Opie, Morgan;Wickelgren, Kirsten;Zakharevich, Inna
  • 通讯作者:
    Zakharevich, Inna
Dévissage and localization for the Grothendieck spectrum of varieties
格洛腾迪克品种谱的设计和本地化
  • DOI:
    10.1016/j.aim.2022.108710
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Campbell, Jonathan A.;Zakharevich, Inna
  • 通讯作者:
    Zakharevich, Inna
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Inna Zakharevich其他文献

A prop structure on partitions
隔断上的支柱结构
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Coline Emprin;Dana Hunter;Muriel Livernet;Christine Vespa;Inna Zakharevich
  • 通讯作者:
    Inna Zakharevich

Inna Zakharevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Inna Zakharevich', 18)}}的其他基金

FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052977
  • 财政年份:
    2021
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Generalized scissors congruence
广义剪刀同余
  • 批准号:
    1654522
  • 财政年份:
    2016
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Generalized scissors congruence
广义剪刀同余
  • 批准号:
    1612037
  • 财政年份:
    2016
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1203377
  • 财政年份:
    2012
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Fellowship Award

相似海外基金

Constructing and Classifying Pre-Tannakian Categories
前坦纳克阶范畴的构建和分类
  • 批准号:
    2401515
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
CBOIAO: Constructing the 'Barbarian Other' in Attic Oratory of the Fourth Century B.C.E.
CBIOIAO:在公元前四世纪的阁楼演讲中构建“野蛮的他者”
  • 批准号:
    EP/Y025172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Fellowship
Voices from the Periphery: (De-)Constructing and Contesting Public Narratives about Post-Industrial Marginalization (VOICES)
来自外围的声音:关于后工业边缘化的公共叙事的(去)建构和争论(VOICES)
  • 批准号:
    AH/Y007603/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Research Grant
Constructing a 1.5-million-year time series of magmatic and hydrothermal activity at the Juan de Fuca ridge
构建胡安德富卡海岭 150 万年的岩浆和热液活动时间序列
  • 批准号:
    2323102
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
Constructing a framework for early childhood teachers' cultural wellbeing
构建幼儿教师文化福祉框架
  • 批准号:
    DE230100691
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Discovery Early Career Researcher Award
Glass Beads in the Boundary Region of Japan -Fundamental Research for Constructing the History of Japanese Glass-
日本边境地区的玻璃珠 -构建日本玻璃史的基础研究-
  • 批准号:
    23K00955
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creating harmonised and scalable methods and tools for constructing households in large diverse administrative and health research datasets
创建统一且可扩展​​的方法和工具,用于在大型多样化的行政和健康研究数据集中构建家庭
  • 批准号:
    ES/X00046X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Research Grant
Constructing Valid, Equitable, and Flexible Kinematics and Dynamics Assessment Scales with Evidence-Centered Design
通过以证据为中心的设计构建有效、公平、灵活的运动学和动力学评估量表
  • 批准号:
    2235595
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
An investigation into the process of constructing the social problems surrounding tattoos in Japan, focusing on its discourse as a fashion
调查日本纹身社会问题的构​​建过程,重点关注纹身作为一种时尚的话语
  • 批准号:
    23K12596
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constructing a causal model of ADHD from an embodied perspective
从具身视角构建ADHD因果模型
  • 批准号:
    23KJ0064
  • 财政年份:
    2023
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了