Optimal Transport, Interacting Particles, and Stochastic Portfolio Theory

最优传输、相互作用粒子和随机投资组合理论

基本信息

  • 批准号:
    1612483
  • 负责人:
  • 金额:
    $ 18.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The practical motivation for the questions under study in this research project comes from quantitative finance. Specifically, the project investigates the mathematics behind portfolios that outperform a standard index such as S&P 500 in the presence of volatility. The utility of such portfolios is that in that process they reduce volatility demonstrably, and thus contribute to the stability of financial markets. Although ad hoc use of such portfolios is widespread, a systematic mathematical study has been limited so far. It turns out the mathematics is related to some very modern topics in probability and geometry, especially that of the Monge-Kantorovich optimal transport maps. Successful completion of the research will not only lead to striking new mathematics in probability and information geometry, but will also imply very practical applications in modern portfolio management, with potential societal benefits of the highest level via increased financial stability. The investigator plans to study an array of problems linking the fields of optimal transport and interacting particle systems, with applications to modern portfolio theory. There are two parts to this project. The first one investigates the behavior of exponential stochastic integrals where the integrand is given by a solution of a Monge-Kantorovich optimal transport map. The study is an interesting interplay between geometry of the unit simplex and universal behavior of stochastic integrals when they are not martingales. Classical probability relies heavily on the martingale property of stochastic integrals. Here, the investigator explores a completely distinct class of behaviors that should be of independent interest. The second part studies properties of interacting continuous-time particle systems in finite and infinite dimensions. These particle systems, originally coming from stochastic portfolio theory, can be thought of as a continuous-time analogue of the discrete time exclusion process on the integer lattice. However, unlike exclusion processes, very little is known about these processes. They are conjectured to display striking phase transitions. The project aims to establish concentration inequalities and fluctuation estimates (among other properties) for such processes, which is a step towards proving more subtle behavior of these processes.
本研究课题所研究问题的现实动机来自于量化金融。具体来说,该项目研究了在波动性存在的情况下,投资组合表现优于标准指数(如标准普尔500指数)背后的数学。这种投资组合的效用是,在这一过程中,它们明显减少了波动,从而有助于金融市场的稳定。虽然特设使用这种投资组合是广泛的,系统的数学研究一直有限。事实证明,数学与概率和几何中的一些非常现代的主题有关,特别是Monge-Kantorovich最优运输映射。研究的成功完成不仅将导致概率和信息几何学中引人注目的新数学,而且还将意味着在现代投资组合管理中的非常实际的应用,通过增加金融稳定性具有最高水平的潜在社会效益。研究人员计划研究一系列问题,将最佳运输和相互作用的粒子系统领域联系起来,并应用于现代投资组合理论。这个项目有两个部分。第一个研究指数随机积分的行为,其中被积函数是由Monge-Kantorovich最优迁移映射的解给出的。这项研究是一个有趣的相互作用的几何单位单纯形和普遍行为的随机积分时,他们不是鞅。经典概率在很大程度上依赖于随机积分的鞅性质。在这里,研究者探索了一个完全不同的行为类别,应该是独立的兴趣。第二部分研究有限维和无限维相互作用连续时间粒子系统的性质。这些粒子系统,最初来自随机投资组合理论,可以被认为是一个连续时间模拟的离散时间排斥过程的整数格。然而,与排斥过程不同,人们对这些过程知之甚少。它们被用来显示惊人的相变。该项目旨在为这些过程建立浓度不等式和波动估计(以及其他属性),这是朝着证明这些过程的更微妙行为迈出的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soumik Pal其他文献

Cycles and eigenvalues of sequentially growing random regular graphs
顺序增长随机正则图的循环和特征值
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tobias Johnson;Soumik Pal
  • 通讯作者:
    Soumik Pal
A Combinatorial Analysis of Interacting Diffusions
  • DOI:
    10.1007/s10959-009-0269-8
  • 发表时间:
    2009-12-31
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Sourav Chatterjee;Soumik Pal
  • 通讯作者:
    Soumik Pal
Concentration of measure for systems of Brownian particles interacting through their ranks
通过其等级相互作用的布朗粒子系统的测量集中度
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soumik Pal;Mykhaylo Shkolnikov
  • 通讯作者:
    Mykhaylo Shkolnikov
Embedding optimal transports in statistical manifolds
Contradictory predictions.
相互矛盾的预测。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Burdzy;Soumik Pal
  • 通讯作者:
    Soumik Pal

Soumik Pal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soumik Pal', 18)}}的其他基金

Pacific Interdisciplinary Hub on Optimal Transport
太平洋最佳交通跨学科中心
  • 批准号:
    2133244
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Standard Grant
Entropic Regularization of Optimal Transport
最优传输的熵正则化
  • 批准号:
    2052239
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Continuing Grant
Eigenvectors of random graphs, random matrices and triple collisions
随机图、随机矩阵和三重碰撞的特征向量
  • 批准号:
    1308340
  • 财政年份:
    2013
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Standard Grant
Eigenvectors of random graphs & diffusions on simplices
随机图的特征向量
  • 批准号:
    1007563
  • 财政年份:
    2010
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in cell signaling and cargo transport
细胞信号传导和货物运输中的大麻素受体相互作用蛋白 1a (CRIP1a)
  • 批准号:
    10612812
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
Transport and optical properties of the interacting electron gas in Weyl semimetals and two-dimensional materials
外尔半金属和二维材料中相互作用电子气的输运和光学性质
  • 批准号:
    RGPIN-2019-06045
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Impacts of multiple interacting stressors on the environment: Investigating the fate, transport, and dynamic relationships between contaminant and nutrient cycles
多种相互作用的压力源对环境的影响:调查污染物和营养循环之间的命运、运输和动态关系
  • 批准号:
    RGPIN-2017-06017
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Impacts of multiple interacting stressors on the environment: Investigating the fate, transport, and dynamic relationships between contaminant and nutrient cycles
多种相互作用的压力源对环境的影响:调查污染物和营养循环之间的命运、运输和动态关系
  • 批准号:
    RGPIN-2017-06017
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Transport and optical properties of the interacting electron gas in Weyl semimetals and two-dimensional materials
外尔半金属和二维材料中相互作用电子气的输运和光学性质
  • 批准号:
    RGPIN-2019-06045
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Transport and optical properties of the interacting electron gas in Weyl semimetals and two-dimensional materials
外尔半金属和二维材料中相互作用电子气的输运和光学性质
  • 批准号:
    RGPIN-2019-06045
  • 财政年份:
    2020
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Impacts of multiple interacting stressors on the environment: Investigating the fate, transport, and dynamic relationships between contaminant and nutrient cycles
多种相互作用的压力源对环境的影响:调查污染物和营养循环之间的命运、运输和动态关系
  • 批准号:
    RGPIN-2017-06017
  • 财政年份:
    2020
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2020
  • 资助金额:
    $ 18.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了