Dynamic Prediction of Time to Next Failure Event
动态预测下一次故障事件发生的时间
基本信息
- 批准号:1612965
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In manufacturing and industrial applications, it is critical to regularly inspect all the components of a working system, record data during the inspection, use these data to predict the next potential failure event, and take preventive actions. In medical practice and research, the health status of patients is measured repeatedly over time during post-treatment follow-up visits. During each visit, new information is obtained and physicians use that information to predict a patient's prognosis and design an appropriate treatment plan. These applications involve the use of current information to predict the time until the next failure event (such as disease progression). These continuously updated predictions, called dynamic predictions, are critical for patients with non-curable diseases such as cancer or AIDS. This project will develop and apply modern statistical techniques to extract useful features from massive data sets collected over time, and then use these features to conduct predictions as accurately as possible. When these statistical methods are built into a computer software program, they can be used online to conduct predictions. Patients and physicians can use such programs to evaluate disease progression and to make early decisions about treatment and prevention. Industrial engineers can use such programs to forecast a potential system failure and initiate maintenance. Commercial web sites can collect customers' reaction data online and then apply such methods to better predict customers' needs and improve sales and customer satisfaction.Many statistical methods assume that longitudinal data trajectories follow parametric models, linear or nonlinear. However, the pattern of longitudinal data trajectories differs in each specific setting, making it difficult to identify a satisfactory parametric family that is suitable for all situations. Based on this consideration, a functional principal component analysis (FPCA) approach is used to capture the longitudinal data structures and functional patterns. The first goal of this project is to decompose biomarker trajectories into some feature functions, and then incorporate these features as covariates in the Cox proportional hazards model to make dynamic predictions. Given that the proportional hazards assumption may be too restrictive in some cases, the second goal of this project is to conduct dynamic prediction for the quantile functions of the residual event time under a flexible framework. The residual lifetime quantile regression model facilitates a meaningful interpretation and offers more direct answers than the Cox model. The third goal of this project is to develop analytic and visualization tools for identifying longitudinal data trajectory patterns prior to a failure event by looking at them backwards in time and aligning them with the failure events. Discerning these patterns can greatly facilitate dynamic prediction of the imminent failure event. The proposed methods are specially designed to handle the complications of censored data, irregular follow-up times and dynamically collected data to facilitate prediction over a range of time points.
在制造和工业应用中,定期检查工作系统的所有组件,记录检查过程中的数据,使用这些数据来预测下一个潜在的故障事件,并采取预防措施是至关重要的。在医疗实践和研究中,在治疗后随访期间反复测量患者的健康状况。在每次访问中,获得新的信息,医生使用这些信息来预测患者的预后并设计适当的治疗计划。这些应用包括使用当前信息来预测到下一个故障事件(如疾病进展)的时间。这些不断更新的预测被称为动态预测,对癌症或艾滋病等无法治愈的疾病的患者至关重要。该项目将开发和应用现代统计技术,从长期收集的大量数据集中提取有用的特征,然后利用这些特征进行尽可能准确的预测。当这些统计方法被编入计算机软件程序后,它们就可以用于在线进行预测。患者和医生可以使用这些程序来评估疾病进展,并对治疗和预防做出早期决定。工业工程师可以使用这些程序来预测潜在的系统故障并启动维护。商业网站可以在线收集客户的反应数据,然后应用这些方法更好地预测客户的需求,提高销售和客户满意度。许多统计方法假设纵向数据轨迹遵循参数模型,线性或非线性。然而,纵向数据轨迹的模式在每个特定环境中是不同的,因此很难确定适合所有情况的令人满意的参数族。基于这种考虑,使用功能主成分分析(FPCA)方法来捕获纵向数据结构和功能模式。该项目的第一个目标是将生物标志物轨迹分解为一些特征函数,然后将这些特征作为协变量纳入Cox比例风险模型中进行动态预测。考虑到比例风险假设在某些情况下可能过于严格,本项目的第二个目标是在灵活的框架下对剩余事件时间的分位数函数进行动态预测。剩余寿命分位数回归模型有助于有意义的解释,并提供比Cox模型更直接的答案。该项目的第三个目标是开发分析和可视化工具,通过及时向后查看并将其与故障事件对齐来识别故障事件之前的纵向数据轨迹模式。识别这些模式可以极大地促进对即将发生的失效事件的动态预测。所提出的方法专门用于处理截尾数据、不规则跟踪时间和动态收集数据的复杂性,以便于在一个时间点范围内进行预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuelin Huang其他文献
Randomized Phase II Trial of Two Schedules of Decitabine As Frontline Therapy in Elderly Patients with Acute Myeloid Leukemia Ineligible for Standard Cytotoxic Induction Regimens
对不符合标准细胞毒性诱导方案的老年急性髓性白血病患者进行两种地西他滨一线治疗的随机 II 期试验
- DOI:
10.1182/blood.v128.22.1612.1612 - 发表时间:
2016 - 期刊:
- 影响因子:20.3
- 作者:
Maliha Khan;H. Kantarjian;G. Garcia;G. Borthakur;T. Kadia;Xuelin Huang;N. Daver;C. Dinardo;A. Ferrajoli;W. Wierda;Z. Estrov;C. Benton;P. Bose;Y. Alvarado;S. Kornblau;M. Ohanian;Yvonne Gasior;M. Richie;S. Pierce;E. Jabbour;J. Cortes;F. Ravandi - 通讯作者:
F. Ravandi
Frontline Therapy for Older Patients (pts) with Acute Myeloid Leukemia (AML): Clofarabine Plus Low-Dose Cytarabine Induction Followed by Prolonged Consolidation with Clofarabine Plus Low-Dose Cytarabine Alternating with Decitabine
老年急性髓性白血病 (AML) 患者的一线治疗:氯法拉滨加低剂量阿糖胞苷诱导,随后长期巩固氯法拉滨加低剂量阿糖胞苷与地西他滨交替
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Faderl;F. Ravandi;G. Garcia;Xuelin Huang;E. Jabbour;T. Kadia;A. Ferrajoli;Z. Estrov;J. Feliu;Heather M Schroeder;M. Kwari;H. Kantarjian - 通讯作者:
H. Kantarjian
Randomized Trial of Ibrutinib Versus Ibrutinib Plus Rituximab (Ib+R) in Patients with Chronic Lymphocytic Leukemia (CLL)
依鲁替尼与依鲁替尼加利妥昔单抗 (Ib R) 在慢性淋巴细胞白血病 (CLL) 患者中的随机试验
- DOI:
10.1182/blood.v130.suppl_1.427.427 - 发表时间:
2017 - 期刊:
- 影响因子:20.3
- 作者:
J. Burger;M. Sivina;A. Ferrajoli;N. Jain;Ekaterina Kim;T. Kadia;Z. Estrov;G. Gonzalez;Xuelin Huang;M. Ohanian;M. Andreeff;Mathew Thomas;Lynette Alexander;H. Kantarjian;S. O'brien;W. Wierda;M. Keating - 通讯作者:
M. Keating
Updated Results of a Phase II Study of Ponatinib and Blinatumomab for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia
Ponatinib 和 Blinatumomab 用于费城染色体阳性急性淋巴细胞白血病患者的 II 期研究的最新结果
- DOI:
10.1182/blood-2021-153795 - 发表时间:
2021 - 期刊:
- 影响因子:20.3
- 作者:
N. Short;H. Kantarjian;M. Konopleva;S. Desikan;N. Jain;F. Ravandi;Xuelin Huang;W. Wierda;G. Borthakur;K. Sasaki;G. Issa;Y. Alvarado;N. Pemmaraju;G. Garcia;C. Dinardo;J. Thankachan;R. Delumpa;A. Milton;J. Rivera;Lourdes Waller;Rebecca E. Garris;E. Jabbour - 通讯作者:
E. Jabbour
Chemotherapy-Free Combination of Blinatumomab and Ponatinib in Adults with Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Updates from a Phase II Trial
- DOI:
10.1182/blood-2023-188064 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Fadi G. Haddad;Elias Jabbour;Nicholas J. Short;Nitin Jain;Xuelin Huang;Guillermo Montalban-Bravo;Tapan M. Kadia;Naval Daver;Cedric Nasnas;Ejiroghene Mayor;Patrice Eric Nasnas;Wuliamatu Deen;Marianne Zoghbi;Jennifer Thankachan;Christopher Loiselle;Rebecca Garris;Farhad Ravandi;Hagop M. Kantarjian - 通讯作者:
Hagop M. Kantarjian
Xuelin Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ATD: Dynamic Modeling for Extreme Event Prediction with Uncertainty Quantification with Multi-panel Time Series
ATD:通过多面板时间序列不确定性量化进行极端事件预测的动态建模
- 批准号:
2319260 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Developing a dynamic modeling framework for surveillance, prediction, and real-time resource allocation to reduce health disparities during Covid-19 and future pandemics
开发用于监测、预测和实时资源分配的动态建模框架,以减少 Covid-19 和未来大流行期间的健康差距
- 批准号:
10584876 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10652331 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10709203 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10296519 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10430266 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Optimal Field Sensing Strategies for Time-Critical Estimation and Prediction of Dynamic Environments
用于动态环境的时间关键估计和预测的最佳场传感策略
- 批准号:
1763064 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant