Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
基本信息
- 批准号:10652331
- 负责人:
- 金额:$ 35.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaBreast Cancer Risk FactorCancer BurdenCancer ControlChronicChronic Kidney FailureClassificationCodeComputer softwareCoronary heart diseaseDataDiseaseEvaluationEye diseasesFutureGenomicsHealthHeterogeneityHormone useIndividualLifeLife Cycle StagesLiftingMammographyMeasuresMethodologyMethodsModelingNurses&apos Health StudyObesityOncologyOutcomePatientsPatternPerformancePopulationPopulation SciencesPositioning AttributePostmenopausePremenopausePreventionPrincipal Component AnalysisPrognosisROC CurveRiskRisk AssessmentRisk FactorsRisk MarkerSchemeStatistical ModelsTimeUpdateValidationWomanWorkcancer diagnosiscancer riskimprovedinnovationmalignant breast neoplasmnovelopen sourcepersonalized risk predictionprecision oncologypredictive modelingrisk predictionrisk prediction modelsimulationsurvivorshiptooltrenduser-friendly
项目摘要
PROJECT SUMMARY
Accurate assessment of risk is a top priority in oncology due to the population burden of cancer. Breast cancer
is the leading cancer diagnosis among women worldwide and accordingly has the longest and broadest focus
on risk prediction. Most traditional prediction models only utilize baseline factors known to be associated with
breast cancer risk. More recent models expand to place greater emphasis on genomic risk factors. However,
the predominant move of adding genomic risk markers incorporates a measure that is invariant to time (based
on SNPs) and do not necessarily solve the challenge of improving breast cancer risk classification. The
intrinsic heterogeneity between and within patients over time are reflected in part, by the time-varying covariate
trajectories, which may provide important information for the prediction of breast cancer risk. The accumulation
of cancer risk over life, well documented for breast cancer, is ideally suited to methods that incorporate time-
varying covariates. Theobjective of this proposal is toprovide novel statistical models that can incorporate
patient heterogeneity in a personalized, dynamic manner leading to a more accurate risk prediction scheme.
The proposed algorithms encompass innovative functional approaches to comprehensively characterize the
changing pattern of the longitudinal trajectories by a set of outcome-independent/unsupervised and outcome-
dependent/supervised features. The set of individual-specific features will contain information on the observed
time-varying `pattern' rather than one-time exposure in existing methods, leading to a higher predictive power.
The dynamic prediction models will be built in a stepwise fashion, starting with a single time-varying covariate,
and extended to the multivariate settings, to accommodate multiple time-varying covariates. The proposed
methods will be applied to the Nurses' Health Study and further assessed externally in the Mayo
Mammography Health Study. All of the proposed methods will be accompanied with user-friendly open-source
software.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Jiang其他文献
Shu Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu Jiang', 18)}}的其他基金
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10709203 - 财政年份:2021
- 资助金额:
$ 35.36万 - 项目类别:
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10296519 - 财政年份:2021
- 资助金额:
$ 35.36万 - 项目类别:
Dynamic prediction incorporating time-varying covariates for the onset of breast cancer
结合时变协变量的乳腺癌发病动态预测
- 批准号:
10430266 - 财政年份:2021
- 资助金额:
$ 35.36万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 35.36万 - 项目类别:
Standard Grant