Bayesian Global-Local Shrinkage in High Dimensions
高维贝叶斯全局局部收缩
基本信息
- 批准号:1613063
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional data are ubiquitous in many modern applications such as genomics, finance, and image analysis. Developing approaches that are computationally scalable to the size of these data sets while retaining strong theoretical justifications remains a challenge. The goal of the project is to develop new methodology to enable tractable analysis of modern high-dimensional data sets. Software developed from this research will be made publicly available.Bayesian methodology for high-dimensional data traditionally relies on point mass mixture priors that have attractive theoretical properties but often scale poorly due to the computational difficulties associated with searching a high-dimensional discrete space. The goal of the project is to explore the use of global-local alternatives to high-dimensional problems. Many recent investigations using global-local priors, while showing signs of promise, have been restricted to studying the simple normal means model. The PIs will employ the techniques of global-local shrinkage to problems of fundamental interest in statistics, such as regression, nonlinear function estimation and covariance estimation. More specifically, the PIs aim to show in regression problems that using global-local shrinkage instead of purely global shrinkage methods such as ridge regression or principal components regression can result in improved prediction. They aim to show global-local shrinkage priors are good candidates for non-informative analysis of low-dimensional functions of high-dimensional parameters. The PIs also propose to use global-local shrinkage in covariance estimation and joint mean-covariance estimation problems and apply the developed methodology in suitable applications arising from genomics or finance.
高维数据在许多现代应用中无处不在,如基因组学、金融和图像分析。开发在计算上可扩展到这些数据集的大小的方法,同时保留强有力的理论依据仍然是一个挑战。该项目的目标是开发新的方法,使现代高维数据集的易处理的分析。从这项研究中开发的软件将公开提供。贝叶斯方法的高维数据传统上依赖于点质量混合先验,具有吸引人的理论属性,但往往规模差,由于与搜索高维离散空间的计算困难。该项目的目标是探索使用全局-局部替代方案来解决高维问题。许多最近的调查使用全球本地的先验,而显示出的承诺的迹象,已被限制在研究简单的正态均值模型。PI将采用全局-局部收缩技术来解决统计学中的基本问题,例如回归,非线性函数估计和协方差估计。更具体地说,PI的目的是在回归问题中表明,使用全局-局部收缩而不是纯粹的全局收缩方法(如岭回归或主成分回归)可以改善预测。他们的目的是显示全局-局部收缩先验是高维参数的低维函数的非信息分析的良好候选者。PI还建议在协方差估计和联合均值-协方差估计问题中使用全局-局部收缩,并将所开发的方法应用于基因组学或金融领域的合适应用中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint mean–covariance estimation via the horseshoe
通过马蹄形进行联合均值协方差估计
- DOI:10.1016/j.jmva.2020.104716
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Li, Yunfan;Datta, Jyotishka;Craig, Bruce A.;Bhadra, Anindya
- 通讯作者:Bhadra, Anindya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anindya Bhadra其他文献
Examining the Validity of the Total Nutrient Index for Assessing Intakes of Nutrients From Foods, Beverages, and Dietary Supplements
- DOI:
10.1093/cdn/nzab048_006 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Alexandra Cowan;Shinyoung Jun;Janet Tooze;Kevin Dodd;Jaime Gahche;Heather Eicher-Miller;Patricia Guenther;Anindya Bhadra;Regan Bailey - 通讯作者:
Regan Bailey
Multivariate Confluent Hypergeometric Covariance Functions with Simultaneous Flexibility over Smoothness and Tail Decay
- DOI:
10.1007/s11004-025-10185-6 - 发表时间:
2025-03-25 - 期刊:
- 影响因子:3.600
- 作者:
Drew Yarger;Anindya Bhadra - 通讯作者:
Anindya Bhadra
Global-Local Mixtures: A Unifying Framework
- DOI:
10.1007/s13171-019-00191-2 - 发表时间:
2020-02-17 - 期刊:
- 影响因子:0.500
- 作者:
Anindya Bhadra;Jyotishka Datta;Nicholas G. Polson;Brandon T. Willard - 通讯作者:
Brandon T. Willard
Temporal Dietary Patterns Are Associated with Body Mass Index, Waist Circumference and Obesity
- DOI:
10.1093/cdn/nzaa046_018 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Heather Eicher-Miller;Marah Aqeel;Jiaqi Guo;Saul Gelfand;Edward Delp;Anindya Bhadra;Elizabeth Richards;Erin Hennessy;Luotao Lin - 通讯作者:
Luotao Lin
Comparison of Four Methods to Estimate the Prevalence of Dietary Supplement Use Among U.S. Children
- DOI:
10.1093/cdn/nzaa056_019 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Shinyoung Jun;Alexandra E. Cowan;Jaime Gahche;Janet Tooze;Kevin Dodd;Heather Eicher-Miller;Patricia Guenther;Johanna Dwyer;Nancy Potischman;Anindya Bhadra;Anita Panjwani;Regan L. Bailey - 通讯作者:
Regan L. Bailey
Anindya Bhadra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anindya Bhadra', 18)}}的其他基金
Developments in Gaussian Processes and Beyond: Applications in Geostatistics and Deep Learning
高斯过程及其他过程的发展:地统计学和深度学习中的应用
- 批准号:
2014371 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Local Meets Global: Engaging with International Development Research, Policy and Practice around Gender and Social Transformation
地方与全球相遇:参与围绕性别和社会转型的国际发展研究、政策和实践
- 批准号:
ES/Y010353/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
- 批准号:
2305947 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
A local approach to the implementation of a global plastic treaty
实施全球塑料条约的本地方法
- 批准号:
23K12429 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global monocultures and local diversity: Gilbert White, and natural observation as a form of community-building
全球单一文化和地方多样性:吉尔伯特·怀特和自然观察作为社区建设的一种形式
- 批准号:
2878509 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Studentship
he Construction of Medicine v.s. Non-medicine: a Historical and Social Study of Herbs' Materiality and Knowledge Productions in the Local and Global Context
他的医学建设与。
- 批准号:
23K12073 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global Issues, Local Issues: The SDGs and Social Justice in Japan and Abroad
全球问题、地方问题:日本和国外的可持续发展目标和社会正义
- 批准号:
23K00665 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Children of War: Evolving Local and Global Understandings of Child Soldiering in African Conflicts, c.1940-2000
战争儿童:当地和全球对非洲冲突中儿童兵的理解的演变,c.1940-2000
- 批准号:
AH/X00399X/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Zero-cycles over local and global fields
局部和全局领域的零循环
- 批准号:
2302196 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Local Governments and Policy Processes of Producing 'Global Human Resources': Japan's National Project of Internationalizing Education
地方政府和培养“全球人力资源”的政策进程:日本国家教育国际化项目
- 批准号:
23K12731 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists