Bayesian Global-Local Shrinkage in High Dimensions
高维贝叶斯全局局部收缩
基本信息
- 批准号:1613063
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional data are ubiquitous in many modern applications such as genomics, finance, and image analysis. Developing approaches that are computationally scalable to the size of these data sets while retaining strong theoretical justifications remains a challenge. The goal of the project is to develop new methodology to enable tractable analysis of modern high-dimensional data sets. Software developed from this research will be made publicly available.Bayesian methodology for high-dimensional data traditionally relies on point mass mixture priors that have attractive theoretical properties but often scale poorly due to the computational difficulties associated with searching a high-dimensional discrete space. The goal of the project is to explore the use of global-local alternatives to high-dimensional problems. Many recent investigations using global-local priors, while showing signs of promise, have been restricted to studying the simple normal means model. The PIs will employ the techniques of global-local shrinkage to problems of fundamental interest in statistics, such as regression, nonlinear function estimation and covariance estimation. More specifically, the PIs aim to show in regression problems that using global-local shrinkage instead of purely global shrinkage methods such as ridge regression or principal components regression can result in improved prediction. They aim to show global-local shrinkage priors are good candidates for non-informative analysis of low-dimensional functions of high-dimensional parameters. The PIs also propose to use global-local shrinkage in covariance estimation and joint mean-covariance estimation problems and apply the developed methodology in suitable applications arising from genomics or finance.
高维数据在许多现代应用中无处不在,例如基因组学,金融和图像分析。开发在计算上可扩展到这些数据集的大小同时保留强大理论依据的方法仍然是一个挑战。该项目的目的是开发新的方法,以实现对现代高维数据集的可进行分析。从这项研究开发的软件将被公开使用。用于高维数据的Bayesian方法传统上依赖于具有吸引人理论属性的点质量混合先验,但由于与搜索高维离散空间相关的计算困难,因此通常会缩放较差。该项目的目的是探索全球本地替代方案的高维问题。许多使用全球本地先验的调查虽然表现出诺言,但仍仅限于研究简单的正常手段模型。 PI将利用全球本地收缩的技术来解决统计学的基本兴趣问题,例如回归,非线性功能估计和协方差估计。更具体地说,PI的目的是显示回归问题,这些问题使用全球本地收缩而不是纯粹的全球收缩方法,例如脊回归或主要成分回归可以改善预测。他们的目的是显示全部本地收缩率是对高维参数低维功能的非信息分析的良好候选者。 PI还建议在协方差估计和联合均值协方差估计问题中使用全球本地收缩率,并将开发的方法应用于基因组学或金融的适当应用中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint mean–covariance estimation via the horseshoe
通过马蹄形进行联合均值协方差估计
- DOI:10.1016/j.jmva.2020.104716
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Li, Yunfan;Datta, Jyotishka;Craig, Bruce A.;Bhadra, Anindya
- 通讯作者:Bhadra, Anindya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anindya Bhadra其他文献
Examining the Validity of the Total Nutrient Index for Assessing Intakes of Nutrients From Foods, Beverages, and Dietary Supplements
- DOI:
10.1093/cdn/nzab048_006 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Alexandra Cowan;Shinyoung Jun;Janet Tooze;Kevin Dodd;Jaime Gahche;Heather Eicher-Miller;Patricia Guenther;Anindya Bhadra;Regan Bailey - 通讯作者:
Regan Bailey
Temporal Dietary Patterns Are Associated with Body Mass Index, Waist Circumference and Obesity
- DOI:
10.1093/cdn/nzaa046_018 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Heather Eicher-Miller;Marah Aqeel;Jiaqi Guo;Saul Gelfand;Edward Delp;Anindya Bhadra;Elizabeth Richards;Erin Hennessy;Luotao Lin - 通讯作者:
Luotao Lin
Comparison of Four Methods to Estimate the Prevalence of Dietary Supplement Use Among U.S. Children
- DOI:
10.1093/cdn/nzaa056_019 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Shinyoung Jun;Alexandra E. Cowan;Jaime Gahche;Janet Tooze;Kevin Dodd;Heather Eicher-Miller;Patricia Guenther;Johanna Dwyer;Nancy Potischman;Anindya Bhadra;Anita Panjwani;Regan L. Bailey - 通讯作者:
Regan L. Bailey
An Analysis of Four Proposed Measures for Estimating Distributions of Total Usual Vitamin D Intake Among Adults Using National Health and Nutrition Examination Survey Data
- DOI:
10.1093/cdn/nzaa061_018 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Alexandra E. Cowan;Shinyoung Jun;Janet Tooze;Kevin Dodd;Jaime Gahche;Heather Eicher-Miller;Patricia Guenther;Johanna Dwyer;Nancy Potischman;Anindya Bhadra;Anita Panjwani;Regan L. Bailey - 通讯作者:
Regan L. Bailey
Temporal Patterning Integrating Diet and Physical Activity Shows Stronger Links to Health Indicators Compared to Patterning of Either Diet or Physical Activity Alone
- DOI:
10.1093/cdn/nzab039_005 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Luotao Lin;Jiaqi Guo;Marah Aqeel;Anindya Bhadra;Saul Gelfand;Edward Delp;Elizabeth Richards;Erin Hennessy;Heather Eicher-Miller - 通讯作者:
Heather Eicher-Miller
Anindya Bhadra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anindya Bhadra', 18)}}的其他基金
Developments in Gaussian Processes and Beyond: Applications in Geostatistics and Deep Learning
高斯过程及其他过程的发展:地统计学和深度学习中的应用
- 批准号:
2014371 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
全球农业食品系统的生态毒理及人体健康影响研究
- 批准号:52370193
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
- 批准号:72302220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球中小型湖泊水量对气候变化的响应机理及脆弱性研究
- 批准号:42301449
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高分辨率地球系统模式研究气候变化下生物源排放对全球臭氧的影响
- 批准号:42375189
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于遥感叶绿素荧光的全球陆地蒸散发模拟研究
- 批准号:42371035
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Local Meets Global: Engaging with International Development Research, Policy and Practice around Gender and Social Transformation
地方与全球相遇:参与围绕性别和社会转型的国际发展研究、政策和实践
- 批准号:
ES/Y010353/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
- 批准号:
2305947 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
A local approach to the implementation of a global plastic treaty
实施全球塑料条约的本地方法
- 批准号:
23K12429 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global monocultures and local diversity: Gilbert White, and natural observation as a form of community-building
全球单一文化和地方多样性:吉尔伯特·怀特和自然观察作为社区建设的一种形式
- 批准号:
2878509 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Studentship