Developments in Gaussian Processes and Beyond: Applications in Geostatistics and Deep Learning
高斯过程及其他过程的发展:地统计学和深度学习中的应用
基本信息
- 批准号:2014371
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gaussian processes have diverse applications in statistics and machine learning and are of great contemporary interest. To give a few examples, they arise in the modeling of spatial data, computer experiments, and in studying the limits of deep neural networks. Key reasons for the appeal of Gaussian processes include their simplicity and wide tractability: the entire process is characterized by just the mean and the covariance functions. Yet, although Gaussian processes are popular with well-developed theoretical and computational properties, there are some distinct limitations in using them. Moreover, there are several situations where Gaussian processes are inappropriate as a modeling choice. New methodology will be developed to address some of these limitations, with wide-ranging implications from spatial statistics to deep learning. Publicly available software development, student mentoring, and broad dissemination of research will have impacts beyond the particular research problems at hand.Key areas of the technical investigation are as follows. The first issue concerns the use of the ubiquitous Matern covariance function. A key benefit of the Matern family is the precise control over the smoothness of the resultant Gaussian processes (GP) realizations. However, the tails of the Matern covariance decay exponentially fast, which is inappropriate in the presence of polynomial dependence. Polynomial covariances such as Cauchy remedy this issue, but at the expense of a loss of control over smoothness, in that, GP realizations using Cauchy covariances are either infinitely differentiable or not at all. The PI will develop a new covariance function that combines the flexibility of the Matern and polynomial covariances. Next, the PI will study the limiting behavior of deep neural networks under global-local horseshoe regularization priors on the weights. The lack of bounded moments necessitates the construction of a new Levy process that can be used to study the limits of neural networks under such priors, thereby aiding uncertainty quantification. The PI will study the theoretical and computational properties of the resultant process. Finally, the PI will use recently developed global-local shrinkage approaches for Bayesian regularization in GP regression, with distinct improvements upon existing methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高斯过程在统计学和机器学习中有着广泛的应用,并且在当代引起了极大的兴趣。举几个例子,它们出现在空间数据建模,计算机实验和研究深度神经网络的限制中。高斯过程吸引人的主要原因包括它们的简单性和广泛的易处理性:整个过程的特征在于仅仅是均值和协方差函数。然而,尽管高斯过程具有良好的理论和计算特性,但在使用它们时存在一些明显的限制。此外,有几种情况下,高斯过程不适合作为建模选择。将开发新的方法来解决其中的一些限制,从空间统计到深度学习都有广泛的影响。公开可用的软件开发、学生指导和研究的广泛传播将产生超出手头特定研究问题的影响。技术调查的关键领域如下。第一个问题涉及无处不在的Matern协方差函数的使用。Matern系列的一个主要优点是对高斯过程(GP)实现的平滑度进行精确控制。然而,Matern协方差的尾部呈指数快速衰减,这在多项式依赖的情况下是不合适的。多项式协方差(如柯西)解决了这个问题,但代价是失去了对平滑性的控制,因为使用柯西协方差的GP实现要么是无限可微的,要么根本不是。PI将开发一个新的协方差函数,结合Matern和多项式协方差的灵活性。接下来,PI将研究深度神经网络在全局-局部马蹄正则化先验权重下的限制行为。有界矩的缺乏需要一个新的Levy过程的建设,可用于研究这种先验下的神经网络的限制,从而帮助不确定性量化。PI将研究合成过程的理论和计算特性。最后,PI将使用最近开发的全局-局部收缩方法进行GP回归中的贝叶斯正则化,对现有方法进行了明显改进。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Laplace Mixture Representation of the Horseshoe and Some Implications
马蹄形的拉普拉斯混合表示及其一些含义
- DOI:10.1109/lsp.2022.3228491
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Sagar, Ksheera;Bhadra, Anindya
- 通讯作者:Bhadra, Anindya
Joint mean–covariance estimation via the horseshoe
通过马蹄形进行联合均值协方差估计
- DOI:10.1016/j.jmva.2020.104716
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Li, Yunfan;Datta, Jyotishka;Craig, Bruce A.;Bhadra, Anindya
- 通讯作者:Bhadra, Anindya
SURE-tuned bridge regression
- DOI:10.1007/s11222-023-10350-z
- 发表时间:2024-02-01
- 期刊:
- 影响因子:2.2
- 作者:Loria,Jorge;Bhadra,Anindya
- 通讯作者:Bhadra,Anindya
Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric Covariance Functions
超越马特恩:关于一类可解释的汇合超几何协方差函数
- DOI:10.1080/01621459.2022.2027775
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Ma, Pulong;Bhadra, Anindya
- 通讯作者:Bhadra, Anindya
Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo
- DOI:10.1007/s10260-021-00600-7
- 发表时间:2021-11
- 期刊:
- 影响因子:1
- 作者:M. Schweinberger
- 通讯作者:M. Schweinberger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anindya Bhadra其他文献
Examining the Validity of the Total Nutrient Index for Assessing Intakes of Nutrients From Foods, Beverages, and Dietary Supplements
- DOI:
10.1093/cdn/nzab048_006 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Alexandra Cowan;Shinyoung Jun;Janet Tooze;Kevin Dodd;Jaime Gahche;Heather Eicher-Miller;Patricia Guenther;Anindya Bhadra;Regan Bailey - 通讯作者:
Regan Bailey
Multivariate Confluent Hypergeometric Covariance Functions with Simultaneous Flexibility over Smoothness and Tail Decay
- DOI:
10.1007/s11004-025-10185-6 - 发表时间:
2025-03-25 - 期刊:
- 影响因子:3.600
- 作者:
Drew Yarger;Anindya Bhadra - 通讯作者:
Anindya Bhadra
Global-Local Mixtures: A Unifying Framework
- DOI:
10.1007/s13171-019-00191-2 - 发表时间:
2020-02-17 - 期刊:
- 影响因子:0.500
- 作者:
Anindya Bhadra;Jyotishka Datta;Nicholas G. Polson;Brandon T. Willard - 通讯作者:
Brandon T. Willard
Temporal Dietary Patterns Are Associated with Body Mass Index, Waist Circumference and Obesity
- DOI:
10.1093/cdn/nzaa046_018 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Heather Eicher-Miller;Marah Aqeel;Jiaqi Guo;Saul Gelfand;Edward Delp;Anindya Bhadra;Elizabeth Richards;Erin Hennessy;Luotao Lin - 通讯作者:
Luotao Lin
Comparison of Four Methods to Estimate the Prevalence of Dietary Supplement Use Among U.S. Children
- DOI:
10.1093/cdn/nzaa056_019 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Shinyoung Jun;Alexandra E. Cowan;Jaime Gahche;Janet Tooze;Kevin Dodd;Heather Eicher-Miller;Patricia Guenther;Johanna Dwyer;Nancy Potischman;Anindya Bhadra;Anita Panjwani;Regan L. Bailey - 通讯作者:
Regan L. Bailey
Anindya Bhadra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anindya Bhadra', 18)}}的其他基金
Bayesian Global-Local Shrinkage in High Dimensions
高维贝叶斯全局局部收缩
- 批准号:
1613063 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
强磁场下基于Hylleraas-Gaussian基的双电子双原子分子的谱结构
- 批准号:11504315
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CDS&E-MSS: Sparsely Activated Bayesian Neural Networks from Deep Gaussian Processes
CDS
- 批准号:
2312173 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Non-Gaussian Multivariate Processes for Renewable Energy and Finance
可再生能源和金融的非高斯多元过程
- 批准号:
2310487 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210811 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210840 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
- 批准号:
RGPIN-2019-05906 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Limit theorems for zeroes of Gaussian processes.
高斯过程零点的极限定理。
- 批准号:
EP/V002449/1 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
- 批准号:
RGPIN-2019-05906 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual