Some Mathematical Finance Problems Under Model Uncertainty

模型不确定性下的一些数学金融问题

基本信息

  • 批准号:
    1613208
  • 负责人:
  • 金额:
    $ 8.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The study of financial questions under model uncertainty has recently attracted renewed attention. From a practical point of view, no single predetermined model can fully describe a complicated financial market; it is more reasonable to take into account all probabilistic models that are compatible with market data. Another reason to consider model uncertainty lies in the fact that different investors may have different beliefs or predictions about how the market would evolve, reacting differently to the same stimuli. In this research project, the investigator studies several stochastic optimization problems under model uncertainty that are related to differential and Nash equilibrium in game theory, quantile hedging, and derivative pricing with transaction costs. These studies aim to illuminate some aspects of model uncertainty, which can be applied not only to financial markets but also to other dynamical systems. Mathematically, model uncertainty is usually represented by a non-dominated set of mutually singular probabilities (a negligible set under one probability can have positive mass under another probability). The investigator analyzes four stochastic optimization problems when the uncertain evaluation criterion varies in the nondominated probability set: (1) to determine whether a robust Dynkin game has a value and admits an optimal triplet; (2) to determine whether a robust non-zero-sum game among many players has a Nash equilibrium; (3) to find an optimal strategy for a robust quantile-hedging problem; and (4) to find a no-arbitrage condition for a robust continuous-time form of the fundamental theorem of asset pricing with transaction costs. The lack of a reference probability in the nondominated probability set makes difficult the use of classic tools, such as the dominated convergence theorem and Komlos separation lemma, to analyze the nonlinear expectation associated to the probability set. This project aims to develop new methods to handle the much more complicated probabilistic situations under model uncertainty. These are expected to be useful also in the more general subjects of stochastic control and optimization.
模型不确定性下的金融问题的研究近年来重新引起人们的关注。从实践的角度来看,没有一个单一的预定模型可以完全描述一个复杂的金融市场;考虑到所有与市场数据兼容的概率模型更合理。考虑模型不确定性的另一个原因在于,不同的投资者可能对市场如何演变有不同的信念或预测,对相同的刺激做出不同的反应。在本研究计画中,研究者将探讨模型不确定性下的数个随机最佳化问题,这些问题与博奕论中的微分与纳什均衡、分位数避险以及有交易成本的衍生产品定价有关。这些研究旨在阐明模型不确定性的某些方面,这些方面不仅可以应用于金融市场,也可以应用于其他动力系统。在数学上,模型的不确定性通常由一组非支配的相互奇异的概率表示(在一个概率下可以忽略的集合在另一个概率下可以具有正质量)。在非支配概率集上,研究了不确定性评价准则变化时的四个随机优化问题:(1)确定鲁棒Dynkin对策是否有值并存在最优三元组,(2)确定多个局中人之间的鲁棒非零和对策是否存在Nash均衡,(3)确定鲁棒分位数对冲问题的最优策略,(4)确定鲁棒非零和对策是否存在最优三元组,(5)确定鲁棒非零和对策是否存在最优三元组,(6)确定鲁棒非零和对策是否存在Nash均衡,(7)确定鲁棒分位数对冲问题的最优策略,(8)确定鲁棒非零和对策是否存在最优三元组,(9)确定鲁棒非零和对策是否存在最优三元组,(10)确定鲁棒非零和对策是否存在最优三元组,(10)确定鲁棒非零和对策是否存在最优三元组,(10)确定鲁棒非零和对策是否存在最优三元组,(11)确定鲁棒非零和对策是否存在最优(4)对有交易费用的资产定价基本定理的鲁棒连续时间形式,给出了无套利条件.由于非支配概率集中缺少参考概率,使得经典的工具,如支配收敛定理和Komlos分离引理,很难用来分析与概率集相关的非线性期望。该项目旨在开发新的方法来处理模型不确定性下更复杂的概率情况。这些都是有用的,在更一般的主题,随机控制和优化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Yao其他文献

On g―Evaluations with Lp Domains under Jump Filtration
On g——跳跃过滤下 Lp 域的评估
On g−evaluations with domains under jump filtration
关于跳跃过滤下域的 g− 评估
Exacerbated cardiac fibrosis induced by beta-adrenergic activation in old mice due to decreased AMPK activity
AMPK 活性降低导致老年小鼠 β-肾上腺素能激活加剧心脏纤维化
  • DOI:
    10.1111/1440-1681.12622
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang Jingjing;Song Yao;Li Hao;Shen Qiang;Shen Jing;An Xiangbo;Wu Jimin;Zhang Jianshu;Wu Yunong;Xiao Han;Zhang Youyi
  • 通讯作者:
    Zhang Youyi
Almost sure existence of Navier-Stokes Equations with randomized data in the whole space
几乎可以肯定存在整个空间中具有随机数据的纳维-斯托克斯方程
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Chen;Dehua Wang;Song Yao;Cheng Yu
  • 通讯作者:
    Cheng Yu
Analysis of more than 400,000 women provides case-control evidence for BRCA1 and BRCA2 variant classification
对超过 40 万名女性的分析为 BRCA1 和 BRCA2 变异分类提供了病例对照证据
  • DOI:
    10.1038/s41467-025-59979-6
  • 发表时间:
    2025-05-25
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Maria Zanti;Denise G. O’Mahony;Michael T. Parsons;Leila Dorling;Joe Dennis;Nicholas J. Boddicker;Wenan Chen;Chunling Hu;Marc Naven;Kristia Yiangou;Thomas U. Ahearn;Christine B. Ambrosone;Irene L. Andrulis;Antonis C. Antoniou;Paul L. Auer;Caroline Baynes;Clara Bodelon;Natalia V. Bogdanova;Stig E. Bojesen;Manjeet K. Bolla;Kristen D. Brantley;Nicola J. Camp;Archie Campbell;Jose E. Castelao;Melissa H. Cessna;Jenny Chang-Claude;Fei Chen;Georgia Chenevix-Trench;Don M. Conroy;Kamila Czene;Arcangela De Nicolo;Susan M. Domchek;Thilo Dörk;Alison M. Dunning;A. Heather Eliassen;D. Gareth Evans;Peter A. Fasching;Jonine D. Figueroa;Henrik Flyger;Manuela Gago-Dominguez;Montserrat García-Closas;Gord Glendon;Anna González-Neira;Felix Grassmann;Andreas Hadjisavvas;Christopher A. Haiman;Ute Hamann;Steven N. Hart;Mikael B. A. Hartman;Weang-Kee Ho;James M. Hodge;Reiner Hoppe;Sacha J. Howell;Anna Jakubowska;Elza K. Khusnutdinova;Yon-Dschun Ko;Peter Kraft;Vessela N. Kristensen;James V. Lacey;Jingmei Li;Geok Hoon Lim;Sara Lindström;Artitaya Lophatananon;Craig Luccarini;Arto Mannermaa;Maria Elena Martinez;Dimitrios Mavroudis;Roger L. Milne;Kenneth Muir;Katherine L. Nathanson;Rocio Nuñez-Torres;Nadia Obi;Janet E. Olson;Julie R. Palmer;Mihalis I. Panayiotidis;Alpa V. Patel;Paul D. P. Pharoah;Eric C. Polley;Muhammad U. Rashid;Kathryn J. Ruddy;Emmanouil Saloustros;Elinor J. Sawyer;Marjanka K. Schmidt;Melissa C. Southey;Veronique Kiak-Mien Tan;Soo Hwang Teo;Lauren R. Teras;Diana Torres;Amy Trentham-Dietz;Thérèse Truong;Celine M. Vachon;Qin Wang;Jeffrey N. Weitzel;Siddhartha Yadav;Song Yao;Gary R. Zirpoli;Melissa S. Cline;Peter Devilee;Sean V. Tavtigian;David E. Goldgar;Fergus J. Couch;Douglas F. Easton;Amanda B. Spurdle;Kyriaki Michailidou
  • 通讯作者:
    Kyriaki Michailidou

Song Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
  • 批准号:
    23KJ0648
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: 7th Eastern Conference on Mathematical Finance
会议:第七届东部数学金融会议
  • 批准号:
    2319419
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Equilibrium with Randomized Strategies in Learning Theory and Mathematical Finance
学习理论和数学金融中随机策略的均衡
  • 批准号:
    2400447
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Continuing Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2345556
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Continuing Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2306769
  • 财政年份:
    2023
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Standard Grant
Mathematical models of liquidity risk and applications to finance
流动性风险的数学模型及其在金融中的应用
  • 批准号:
    RGPIN-2021-03299
  • 财政年份:
    2022
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic optimal control in mathematical finance
数学金融中的随机最优控制
  • 批准号:
    RGPIN-2018-03978
  • 财政年份:
    2022
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and methods in mathematical and computational finance
数学和计算金融的理论和方法
  • 批准号:
    RGPIN-2021-04112
  • 财政年份:
    2022
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2205534
  • 财政年份:
    2022
  • 资助金额:
    $ 8.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了