Optimal Transport of Stochastic Processes in Mathematical Finance

数学金融中随机过程的最优传输

基本信息

  • 批准号:
    2345556
  • 负责人:
  • 金额:
    $ 18.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The project investigates optimal transportation of stochastic processes, that is, how to relate probability measures (i.e., the laws of stochastic processes) in a certain cost-optimal way. Amplified by computational advances, optimal transport theory has become an indispensable tool for far-reaching applications in non-parametric high dimensional statistics, image recognition, machine learning and calibration problems in mathematical finance. The project will advance research in the theory of optimal transport of stochastic processes. A special emphasis will be placed on applications to mathematical finance, such as martingale optimal transport and time-dynamic utility optimization problems. The derived theory will lay the basis for advances of numerical routines and novel indicators of model uncertainty, which will help to prepare decision-makers for worst-case scenarios.This project especially focuses on the adapted Wasserstein distance and entropic regularization of optimal transport, which is the method of choice for computing optimal transport problems in high dimensions. The first part of the project investigates a convex duality result and a first-order approximation result for time-dependent robust optimization problems and a characterization of their worst-case optimizers. These results are then applied to quantify model uncertainty in robust portfolio optimization and Davis pricing, machine learning of time-dependent distributions and hedging in financial markets. For each of these problems, closed-form expressions are derived and these are implemented numerically. The second part of the project investigates stability of Schroedinger potentials -- the dual optimizers of the entropic optimal transport problem -- via a strong compactness result and approximation techniques. Furthermore, necessary and sufficient conditions for existence of calibrated martingale measures with finite entropy are derived on the basis of a reference model and marginal distributions derived from market prices, as well as a characterization of the optimizers of the martingale optimal transport problem with entropic penalization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究随机过程的最佳运输,即如何将概率测度(即,随机过程的规律)以某种成本最优的方式。随着计算技术的进步,最优传输理论已成为非参数高维统计、图像识别、机器学习和数学金融中校准问题等广泛应用的不可或缺的工具。该项目将推进随机过程最佳运输理论的研究。一个特别的重点将放在应用数学金融,如鞅最优运输和时间动态效用优化问题。推导出的理论将奠定基础的数值例程和模型的不确定性的新指标,这将有助于决策者准备的最坏情况scenaries.This项目的进步,特别是适应Wasserstein距离和熵正则化的最佳运输,这是计算最佳运输问题的方法选择在高维。该项目的第一部分研究了凸对偶结果和一阶近似结果的时间依赖的鲁棒优化问题和最坏情况下的优化器的表征。然后,这些结果被应用到量化模型的不确定性鲁棒投资组合优化和戴维斯定价,机器学习的时间依赖分布和对冲在金融市场。对于这些问题中的每一个,推导出封闭形式的表达式,这些数值实现。该项目的第二部分研究薛定谔电位的稳定性-熵最优运输问题的对偶优化器-通过强紧性结果和近似技术。进一步,基于参考模型和市场价格的边际分布,得到了有限熵标定鞅测度存在的充要条件,该奖项反映了美国国家科学基金会的法定使命,并被认为是值得支持的,通过评估使用基金会的知识产权,优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johannes Wiesel其他文献

Max-sliced Wasserstein concentration and uniform ratio bounds of empirical measures on RKHS
RKHS 经验测量的最大切片 Wasserstein 浓度和均匀比率范围
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiyu Han;Cynthia Rush;Johannes Wiesel
  • 通讯作者:
    Johannes Wiesel
On the Martingale Schr\"odinger Bridge between Two Distributions
论两个分布之间的 Martingale Schr"odinger 桥
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcel Nutz;Johannes Wiesel
  • 通讯作者:
    Johannes Wiesel

Johannes Wiesel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johannes Wiesel', 18)}}的其他基金

Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2205534
  • 财政年份:
    2022
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
  • 批准号:
    2205534
  • 财政年份:
    2022
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Continuing Grant
The mathematics of stochastic transport and signalling in cells
细胞中随机运输和信号传导的数学
  • 批准号:
    DP210100255
  • 财政年份:
    2021
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Discovery Projects
A stochastic approach for empirical study of urban transport models with multiple equilibria
多重均衡城市交通模型实证研究的随机方法
  • 批准号:
    19K04635
  • 财政年份:
    2019
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AMPS: Optimal Transport Algorithms for Stochastic Uncertainty Management in Modern Power Systems
AMPS:现代电力系统中随机不确定性管理的最优传输算法
  • 批准号:
    1923278
  • 财政年份:
    2019
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Standard Grant
Wave Current Interaction with stochastic advection by Lie transport (WCI-SALT)
波流与李输运随机平流的相互作用 (WCI-SALT)
  • 批准号:
    2280030
  • 财政年份:
    2019
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Studentship
Advancing Stochastic Analysis of Field-Scale Transport Parameters using Hydrogeophysics
利用水文地球物理学推进现场尺度输运参数的随机分析
  • 批准号:
    1907555
  • 财政年份:
    2019
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Standard Grant
Stochastic Constitutive Models for Nano-Scale Heat Transport
纳米级热传输的随机本构模型
  • 批准号:
    1819011
  • 财政年份:
    2018
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Standard Grant
Stochastic analysis of the neutron transport equation and applications to nuclear safety
中子输运方程的随机分析及其在核安全中的应用
  • 批准号:
    EP/P009220/1
  • 财政年份:
    2017
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Research Grant
Effects of impurity screening by stochastic magnetic field on tungsten transport in ITER edge plasmas
随机磁场杂质筛选对 ITER 边缘等离子体中钨输运的影响
  • 批准号:
    17K14426
  • 财政年份:
    2017
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stochastic Modeling Framework of Catchment-Scale Reactive Transport (P07)
流域规模反应输运的随机建模框架(P07)
  • 批准号:
    342514728
  • 财政年份:
    2017
  • 资助金额:
    $ 18.68万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了