Integrative Multivariate Analysis of Multi-View Data
多视图数据的综合多元分析
基本信息
- 批准号:1613295
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multi-view data, or the measuring of several distinct yet interrelated sets of characteristics pertaining to a single set of subjects and possibly collected from an array of sources, has become increasingly common in the fields of engineering and scientific research. This project innovates new methodologies, statistical theories, and scalable computational tools to tackle a range of statistical learning problems with multi-view data. An integrated statistical analysis of the multi-view data generation mechanisms, enabled by this project, will allow us to gain extraordinary insight of real-world phenomena by utilizing information obtained from different lenses and from different angles. The PI will develop several generalizations of the reduced-rank matrix structure, to enable a spectrum of multivariate statistical methods for multi-view learning. The general methodology of reduced-rank estimation is one of the most critical ingredients in modern multivariate analysis. However, for handling multi-view data, the potential of the reduced-rank methodology is far from being fully realized or understood. This project presents the following overarching objectives: (1) develop integrative multivariate regression for joint learning, which entails the exploitation of multiple sets of features to build an integrated predictive model of multivariate response; (2) develop integrative canonical correlation analysis for shared learning, by combining the exploration of shared low-dimensional association structures between multiple sets of features and the development of coherent predictive models for multivariate response; (3) develop integrative dimension reduction for multi-scale learning, by utilizing both the global and local low-dimensional structures among sub-matrices of a high-dimensional matrix object; (4) develop diagnostic measures for robust learning, which would enable reliable multi-view data integration and data quality assessment.
多视图数据,或测量与单一主题相关的几个不同但相互关联的特征集,可能从一系列来源收集,在工程和科学研究领域变得越来越普遍。该项目创新了新的方法、统计理论和可扩展的计算工具,以解决多视图数据的一系列统计学习问题。该项目对多视角数据生成机制进行综合统计分析,将使我们能够利用从不同镜头和不同角度获得的信息,获得对现实世界现象的非凡见解。PI将开发几种降阶矩阵结构的推广,以实现多视图学习的多元统计方法。约秩估计的一般方法是现代多变量分析中最关键的组成部分之一。然而,对于处理多视图数据,降阶方法的潜力还远远没有被充分实现或理解。本项目提出了以下总体目标:(1)开发用于联合学习的综合多元回归,这需要利用多组特征来构建多元响应的综合预测模型;(2)通过探索多组特征之间的共享低维关联结构和开发多元响应的连贯预测模型,发展共享学习的综合典型相关分析;(3)通过利用高维矩阵对象的子矩阵之间的全局和局部低维结构,发展多尺度学习的综合降维;(4)制定稳健学习的诊断措施,这将实现可靠的多视图数据集成和数据质量评估。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrative multi‐view regression: Bridging group‐sparse and low‐rank models
- DOI:10.1111/biom.13006
- 发表时间:2019-03
- 期刊:
- 影响因子:1.9
- 作者:Gen Li;Xiaokang Liu;Kun Chen
- 通讯作者:Gen Li;Xiaokang Liu;Kun Chen
Boosted Sparse and Low-Rank Tensor Regression
- DOI:
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Lifang He;Kun Chen;Wanwan Xu;Jiayu Zhou;Fei Wang
- 通讯作者:Lifang He;Kun Chen;Wanwan Xu;Jiayu Zhou;Fei Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kun Chen其他文献
Bartlett correction of frequency domain empirical likelihood for time series with unknown innovation variance
创新方差未知的时间序列频域经验似然的 Bartlett 校正
- DOI:
10.1007/s10463-019-00723-5 - 发表时间:
2019 - 期刊:
- 影响因子:1
- 作者:
Kun Chen;N. Chan;C. Yau - 通讯作者:
C. Yau
Cross-sectional study on dysphagia evaluation in community-dwelling older adults using the Eating Assessment Tool (EAT) -10, EAT-2, and Water Swallow Test.
使用饮食评估工具 (EAT) -10、EAT-2 和吞水测试对社区老年人吞咽困难进行横断面评估。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Huafang Zhang;Simei Zhang;Chenxi Ye;Sihan Li;Wenfeng Xue;Jie Su;Yufeng Qiu;Lancai Zhao;Pingping Fu;Haiyan Jiang;Xiaona He;Shunfeng Deng;Tao Zhou;Qi Zhou;M. Tang;Kun Chen - 通讯作者:
Kun Chen
MKL-1 is a coactivator for STAT5b, the regulator of Treg cell development and function
MKL-1 是 STAT5b 的共激活剂,STAT5b 是 Treg 细胞发育和功能的调节因子
- DOI:
10.1186/s12964-020-00574-1 - 发表时间:
2020-07 - 期刊:
- 影响因子:8.4
- 作者:
Yuan Xiang;Jun Wang;Jia Peng Li;Wei Guo;Feng Huang;Hui Min Zhang;Han Han Li;Zhou Tong Dai;Zi Jian Zhang;Hui Li;Le Yuan Bao;Chao Jiang Gu;Kun Chen;Tong Cun Zhang;Xing Hua Liao - 通讯作者:
Xing Hua Liao
High-dose 3-dimensional conformal radiotherapy with concomitant vinorelbine plus carboplatin in patients with non-small cell lung cancer: A feasibility study.
非小细胞肺癌患者联合长春瑞滨加卡铂的高剂量三维适形放疗:一项可行性研究。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.9
- 作者:
Qiang Lin;Jun Wang;Yue’e Liu;Huiling Su;Na Wang;Yuehua Huang;Chao;Ping Zhang;Yannan Zhao;Kun Chen - 通讯作者:
Kun Chen
Evaluation of four modelling approaches to estimate nitrous oxide emissions in China's cropland
对估算中国农田一氧化二氮排放量的四种模型方法的评估
- DOI:
10.1016/j.scitotenv.2018.10.336 - 发表时间:
2018 - 期刊:
- 影响因子:9.8
- 作者:
Qian Yue;Kun Chen;Stephen Ogle;Jonathan Hillier;Pete Smith;Mohamed Abdalla;Alicia Ledo;Jianfei Sun;Genxing Pan - 通讯作者:
Genxing Pan
Kun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kun Chen', 18)}}的其他基金
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
- 批准号:
1718798 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Copula-Based Methods for Multivariate Survival Analysis
基于 Copula 的多元生存分析方法
- 批准号:
2210481 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Exploring the Impacts of Gas Accretion and Environment via Multivariate (Spatial) Analysis of Metals, Star formation, and Morphology of Nearby Subaru HSC Galaxies
通过对附近 Subaru HSC 星系的金属、恒星形成和形态进行多元(空间)分析,探索气体吸积和环境的影响
- 批准号:
22K14072 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Robust framework for cluster analysis of multivariate discrete data
多元离散数据聚类分析的稳健框架
- 批准号:
573564-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
- 批准号:
RGPIN-2016-05880 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




