EAPSI: Classification of Fusion Categories with one Non-Invertible Object

EAPSI:具有一个不可逆对象的融合类别的分类

基本信息

  • 批准号:
    1613812
  • 负责人:
  • 金额:
    $ 0.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

Fusion categories are mathematical structures which are used to encode invariants of a wide variety of mathematical systems. A mathematical invariant is a quantity or other property of a mathematical object that remains unchanged under transformations of that object. For example, the symmetries of a given geometric object may be expressed as the data of a fusion category; certain properties of these symmetries must remain the same under deformations of the object, and this is reflected in the invariant theory of fusion categories. One primary goal of this project is to unify several different approaches to the study of fusion categories coming from both mathematics and physics. Kyoto University Professor Masaki Izumi, the host scientist for this project, is a leading international researcher in fusion category theory from the physics-influenced point of view. This collaboration will further the interaction between the two communities and will result in new mathematical questions arising from established physical theories.This project aims to classify fusion categories having one object that is non-invertible under the tensor product: these are called the near-group fusion categories. Izumi has developed a technique utilizing the theory of algebras of operators on Hilbert spaces to make this classification; specifically, he realizes their objects as endomorphisms on Cuntz C* algebras and classifies their possible images. Together Izumi and the principal investigator (PI) will realize the near-groups in this way and provide classification parameters for the possible equivalence classes of fusion categories having the near-group fusion rule. Several different important families of fusion category invariants will also be computed, including the modular data for the Drinfel'd centers and the Frobenius-Schur indicators.This award under the East Asia and Pacific Summer Institutes program supports summer research by a U.S. graduate student and is jointly funded by NSF and the Japan Society for the Promotion of Science.
融合范畴是用于编码各种数学系统的不变量的数学结构。数学不变量是数学对象的数量或其他属性,在该对象的变换下保持不变。例如,给定几何对象的对称性可以表示为融合范畴的数据;这些对称性的某些属性在对象的变形下必须保持不变,这反映在融合范畴的不变理论中。该项目的一个主要目标是统一几种不同的方法来研究来自数学和物理学的融合类别。京都大学教授Masaki Izumi是该项目的主持科学家,他是从物理学影响的角度来看聚变范畴理论的国际领先研究人员。这一合作将进一步促进两个团体之间的互动,并将导致新的数学问题产生于既定的物理理论。该项目旨在对融合类别进行分类,这些类别具有一个在张量积下不可逆的对象:这些被称为近群融合类别。泉开发了一种技术,利用希尔伯特空间上的算子代数理论来进行这种分类;具体来说,他将它们的对象实现为Cuntz C* 代数上的自同态,并对它们可能的图像进行分类。Izumi和主要研究者(PI)将以这种方式实现近群,并为具有近群融合规则的融合类别的可能等价类提供分类参数。此外,还将计算几个不同的重要融合范畴不变量族,包括Drinfel'd中心和Frobenius-Schur指标的模块数据。该奖项是东亚和太平洋夏季研究所计划下的一个奖项,由NSF和日本科学促进会共同资助,用于资助美国研究生的夏季研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Tucker其他文献

Computers in Dietary Studies
  • DOI:
    10.1016/s0002-8223(21)15834-1
  • 发表时间:
    1962-04-01
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Ethel M. Thompson;Henry Tucker
  • 通讯作者:
    Henry Tucker
Fatty Acid Composition of Milk. III. Variation with Stage of Lactation
  • DOI:
    10.3168/jds.s0022-0302(66)88101-8
  • 发表时间:
    1966-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    J.W. Stull;W.H. Brown;Carlos Valdez;Henry Tucker
  • 通讯作者:
    Henry Tucker
Eigenvalues of rotations and braids in spherical fusion categories
球形融合类别中旋转和辫子的特征值
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Daniel Barter;Corey Jones;Henry Tucker
  • 通讯作者:
    Henry Tucker

Henry Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Fellowship Award
Classification of contemporary Kansai dialects
当代关西方言的分类
  • 批准号:
    24K03842
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
  • 批准号:
    EP/Y001613/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
  • 批准号:
    2905969
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
  • 批准号:
    BB/Y514007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
  • 批准号:
    2415299
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了