Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
基本信息
- 批准号:ES/Z50273X/1
- 负责人:
- 金额:$ 42.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Leveraging the power of contemporary Artificial Intelligence (AI), this project aims to revolutionize the way in which we can build and use geodemographic classifications. This will do so by enabling more accurate representations of socio-spatial structure and lowering barriers to census based classification development. It also proposes a user-friendly online tool that will allow anyone to easily create their own tailored, research-ready census-based geodemographic data product.Geodemographic classifications provide useful and policy-relevant representations of the complex and multidimensional characteristics of populations living within small geographic areas. Classifications have been created using components of census data since the 1970s, with notable examples in 2001, 2011 and 2021 when the ONS co-produced the first open geodemographic classifications for the UK with academic partners. These "Output Area Classifications" (OAC) have garnered wide use and inspired localised models for specific geographic areas such as London (LOAC).The core methods used to build geodemographic classification have however remained reasonably static since the 1970s, with only modest update. Furthermore, the creation of classifications also remains a reasonably technical process, limiting the ability for others to produce their own classifications, either for localities or specific purposes.This proposal argues that recent developments in AI, and specifically deep learning and machine learning, show great potential to radically transform the power and utility of geodemographic classification. Firstly, through the creation of more accurate representations of socio-spatial structure; and, secondly, through improved geodemographic information systems that significantly reduce barriers to developing new classificationsAims and ObjectivesThe aim of this project is to update the established methods used to build Census based geodemographic classifications through the integration of AI into:The more automated development of output area level input measures that better account for non-linear geographic relationships between variables.A tool to that enables the automated description of clusters.Enabling the creation of a new public facing and online geodemographic classification system that will enable custom census-based classifications to be created.This will be achieved through the following objectives:Evaluating the use of autoencoders as a new method of data reduction for output area level geodemographic input measures.Developing an operational machine learning pipeline that takes output area level census inputs through to cluster creation.Utilising a large language model (LLM: such as integrated into ChatGPT), to develop an automated geodemographic descriptive tool capable of producing accurate textual descriptions of cluster characteristics.Producing a public facing online tool and accompanying training that will guide users to create their own research-ready census-based geodemographic data products.
该项目利用当代人工智能(AI)的力量(AI),旨在彻底改变我们构建和使用地理人口统计学分类的方式。这样可以通过更准确地表示社会空间结构并降低基于人口普查的分类发展的障碍来做到这一点。它还提出了一种用户友好的在线工具,该工具将使任何人都可以轻松地创建自己量身定制的,基于研究的人口统计学数据产品。地球人口统计学分类提供了生活在小地理区域内的人口的复杂和多维特征的有用且与政策相关的表示。自1970年代以来,已经使用人口普查数据的组件创建了分类,并在2001年,2011年和2021年进行了著名的例子,当时ONS共同制作了英国与学术合作伙伴为英国的第一个开放地球人口统计学分类。这些“输出区域分类”(OAC)已获得广泛的使用,并启发了特定地理区域(例如LOAC)(LOAC)的局部模型。但是,自1970年代以来,用于构建地球人口统计学分类的核心方法一直保持合理的静态状态,只有适度的更新。此外,分类的创建也仍然是一个合理的技术过程,限制了他人出于地方或特定目的而产生自己的分类的能力。该提案认为,AI,特别是深入学习和机器学习的最新发展,具有从根本上改变地理位置分类的力量和实用性。首先,通过创建更准确的社会空间结构表示;其次,通过改进的地球人口统计信息系统,该系统显着降低了开发新的分类和该项目的目标的障碍,是为了更新用于建立基于普查的地理人口统计学分类的既定方法,通过将AI整合到以下方式中:对未经层次的无性地理位置之间的自动化工具的自动化级别的自动化开发。创建新的公共面对面和在线地球人口统计学分类系统,该系统将促进基于自定义的人口普查分类。这将通过以下目标实现:评估使用自动编码器作为一种新的数据减少数据减少数据的方法,用于输出区域级地球人数学级别的地理位车学输入。 (LLM:类似于ChatGpt的集成),以开发一种能够生成集群特征准确的文本描述的自动人口统计学描述工具。生产公开面对的在线工具并伴随培训,以指导用户创建自己的基于研究的研究,基于研究的人口稠密人口统员学数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Singleton其他文献
Public Domain GIS, Mapping & Imaging Using Web-based Services †
使用基于网络的服务的公共领域 GIS、测绘和成像 †
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Hudson;Richard Milton;Michael Batty;M. Gibin;Paul A. Longley;Alex Singleton - 通讯作者:
Alex Singleton
Classifying and mapping residential structure through the London Output Area Classification
通过伦敦输出区域分类对住宅结构进行分类和绘制地图
- DOI:
10.1177/23998083241242913 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Singleton;Paul A. Longley - 通讯作者:
Paul A. Longley
Harnessing mobility data to capture changing work from home behaviours between censuses
利用移动数据来捕捉人口普查期间工作与家庭行为的变化
- DOI:
10.1111/geoj.12555 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hamish Gibbs;Patrick Ballantyne;James Cheshire;Alex Singleton;Mark A. Green - 通讯作者:
Mark A. Green
Understand the Geography of Financial Precarity in England and Wales (Short Paper)
了解英格兰和威尔士金融不稳定的地理分布(短论文)
- DOI:
10.4230/lipics.giscience.2023.87 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Zi Ye;Alex Singleton - 通讯作者:
Alex Singleton
Exploring Energy Deprivation Across Small Areas in England and Wales (Short Paper)
探索英格兰和威尔士小地区的能源匮乏(短论文)
- DOI:
10.4230/lipics.giscience.2023.20 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meixu Chen;Alex Singleton;Caitlin Robinson - 通讯作者:
Caitlin Robinson
Alex Singleton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Singleton', 18)}}的其他基金
Supporting Post Pandemic Recovery and Resilience through New Forms of Data
通过新形式的数据支持大流行后的恢复和恢复力
- 批准号:
ES/W011255/1 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Leveraging the Google Cloud to Estimate Individual Level CO2 Emissions Linked to the School Commute
利用 Google Cloud 估算与学校通勤相关的个人二氧化碳排放量
- 批准号:
ES/K007459/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
The e-Resilience of British Retail Centres
英国零售中心的电子弹性
- 批准号:
ES/L003546/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Using Secondary Data to Measure, Monitor and Visualise Spatio-Temporal Uncertainties in Geodemographics
使用二手数据测量、监测和可视化地理人口统计学中的时空不确定性
- 批准号:
ES/K004719/1 - 财政年份:2013
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Spatial interaction modelling, geodemographics and widening participation in the Higher Education sector?
空间互动模型、地理人口统计学和高等教育领域的扩大参与?
- 批准号:
ES/G001464/1 - 财政年份:2008
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
相似国自然基金
人口集聚密度、人力资本外部性与企业创新:基于人口普查和专利数据的实证研究
- 批准号:71873123
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
中国第四次人口普查空间信息系统实验研究
- 批准号:48970048
- 批准年份:1989
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
THIS PURCHASE ORDER INCLUDES SERVICES TO OBTAIN ANNUAL POPULATION ESTIMATES FOR STATE, COUNTIES AND CENSUS TRACTS BASED ON THE COUNTS PRODUCED BY THE US CENSUS BUREAU. THESE SPECIFICALLY-DEVELOPED EST
该采购订单包括根据美国人口普查局的统计数据获取州、县和人口普查区的年度人口估算的服务。
- 批准号:
10974511 - 财政年份:2023
- 资助金额:
$ 42.59万 - 项目类别:
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
International Population and Agricultural Census Data for Environmental Health Research
用于环境健康研究的国际人口和农业普查数据
- 批准号:
10566349 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Creation of Massive Quasi-Panel Data Based on Census Data, Developing Econometric Methods for Them, and Their Empirical Applications
基于人口普查数据的海量准面板数据的创建、为其开发计量经济学方法及其实证应用
- 批准号:
20H00072 - 财政年份:2020
- 资助金额:
$ 42.59万 - 项目类别:
Grant-in-Aid for Scientific Research (A)