Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle

合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究

基本信息

  • 批准号:
    1614892
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This award supports an interdisciplinary team of three investigators using mathematical modeling, computer simulations, and experiments to develop improved predictive models for the behavior of cell membranes in certain contexts. This research project concerns the mathematical modeling of the interaction between a cell membrane and a solid particle, a physical process that is essential to cell adhesion to a solid surface and cellular uptake (endo/exocytosis) of colloidal nanoparticles (e.g., drug carriers). Advances in nano- and biomedical engineering have made it possible to design smart materials for more effective medical treatments (e.g., targeted drug delivery). These technical developments are based on understanding how a cell membrane interacts with colloidal particles in a fluid environment filled with ions and macromolecules. It is imperative to better understand the physical processes that underpin such ubiquitous membrane-solid interactions in a complex fluid environment.This project aims to develop new mathematical models and numerical algorithms to describe quantitatively the particle-membrane interactions by considering random thermal fluctuations, electrokinetic effects, and nanoscale phenomena (e.g., molecular layering) that are commonly ignored in conventional continuum-based approaches. Microfluidic experiments will be developed in parallel to guide the mathematical and computational modeling of a membrane interacting with solid surfaces with curvature and/or localized features. This project will advance the mathematical modeling of a lipid bilayer membrane (LBM) interacting with solid surfaces and particles by considering the presence of the thin liquid film filling the gap between the LBM and other solid surfaces. It is hypothesized that, through physically consistent effective interaction potentials, a continuum-based thin film equation can capture the macroscopic spreading dynamics of LBMs on surfaces with variable wetting properties and zeta potentials, under different ionic strengths. One of the main results from the mathematical modeling will be the stochastic nonlinear lubrication equation for the height of the thin liquid film between the LBM and a solid surface. Theoretical predictions, such as LBM adhesion and spreading time, will be compared against experimental results for validation and model refinement. The developed model will be employed to investigate the adhesion of a LBM (1) under different ionic concentrations in the liquid and (2) on solid surfaces with curvature and localized features.
该奖项支持一个由三名研究人员组成的跨学科团队,他们使用数学建模、计算机模拟和实验来开发特定环境下细胞膜行为的改进预测模型。该研究项目涉及细胞膜和固体颗粒之间相互作用的数学建模,这是一个物理过程,对于细胞粘附到固体表面和胶质纳米颗粒(如药物载体)的细胞摄取(内/胞外作用)至关重要。纳米和生物医学工程的进步使得设计智能材料用于更有效的医疗(例如,靶向药物输送)成为可能。这些技术的发展是基于对细胞膜如何在充满离子和大分子的流体环境中与胶体粒子相互作用的理解。在复杂的流体环境中,有必要更好地理解支撑这种无处不在的膜-固体相互作用的物理过程。本项目旨在开发新的数学模型和数值算法,通过考虑随机热波动、电动效应和纳米级现象(如分子分层)来定量描述粒子-膜的相互作用,这些现象在传统的基于连续体的方法中通常被忽略。微流控实验将并行发展,以指导膜与具有曲率和/或局部特征的固体表面相互作用的数学和计算建模。本项目将通过考虑填充脂质双层膜与其他固体表面之间空隙的液体薄膜的存在,推进脂质双层膜(LBM)与固体表面和颗粒相互作用的数学建模。假设通过物理上一致的有效相互作用势,基于连续体的薄膜方程可以捕捉到不同离子强度下lbm在不同润湿性质和zeta势的表面上的宏观扩散动力学。数学建模的主要结果之一将是LBM与固体表面之间的薄液膜高度的随机非线性润滑方程。理论预测,如LBM粘附和扩散时间,将与实验结果进行比较,以验证和改进模型。所建立的模型将用于研究(1)液体中不同离子浓度和(2)具有曲率和局部特征的固体表面上LBM的粘附性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Colosqui其他文献

Carlos Colosqui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Colosqui', 18)}}的其他基金

Electrokinetic Flow on Nanostructured Superhydrophilic and Superhydrophobic Surfaces
纳米结构超亲水和超疏水表面上的动电流
  • 批准号:
    2016204
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Capillary Diodes with Selective Oil-Water Wetting Dynamics
具有选择性油水润湿动力学的毛细管二极管
  • 批准号:
    1605809
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Symmetry-enriched topological phases: theoretical foundation and proposal for realization
富含对称性的拓扑相:理论基础和实现建议
  • 批准号:
    18K03446
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study on the oscillation and synchronization mechanisms in biological rhythms and the proposal of experimental studies
生物节律振荡与同步机制的理论研究及实验研究的建议
  • 批准号:
    18K11464
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Overview of Japan's economic diplomacy, its historical verification, and proposal of a theoretical model
日本经济外交概况、历史验证及理论模型提出
  • 批准号:
    18H00829
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle
合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究
  • 批准号:
    1614863
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
US-French Research Proposal: Experimental and Theoretical Investigation of the Multi-Scale Emergence of Parametric Working Memory in Prefrontal Cortex Recurrent Networks
美法研究提案:前额皮质循环网络中参数工作记忆多尺度出现的实验和理论研究
  • 批准号:
    1608236
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle
合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究
  • 批准号:
    1614907
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Kant's Theoretical Philosophy in the Contexts of Modern Philosophy: A Proposal for Dialogic History of Philosophy
现代哲学语境中的康德理论哲学:哲学对话史的提议
  • 批准号:
    22520016
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of multi-terminal quantum dot: proposal of tunable spin Hall effect
多端量子点理论研究:可调自旋霍尔效应的提出
  • 批准号:
    22540333
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A proposal of newly erythrocyte deformability based on multiple mechanical properties with an experimental and a theoretical
通过实验和理论提出基于多种力学特性的新红细胞变形能力
  • 批准号:
    21700468
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Proposal for funding of theoretical research on quantum gases
量子气体理论研究资助提案
  • 批准号:
    361019-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了