RUI: Strongly Nonlinear Dynamics of Lattice Networks: From Analysis to Application

RUI:格子网络的强非线性动力学:从分析到应用

基本信息

  • 批准号:
    1615037
  • 负责人:
  • 金额:
    $ 9.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to develop analytical, computational, and experimental tools for the study of a particular class of lattice networks. Of particular interest in this research are the dynamics of localization and time-periodicity, which can be exploited for a variety of applications including vibration energy harvesting. Through the geometry of the network and the nonlinear nature of the connecting elements, extremely rich dynamics can be observed and verified by experimental data provided by collaborations with engineering laboratories. The results could be used to develop broadband resonators that are powered through ambient vibrations, with the goal of significantly reducing battery usage.The models under study in this project have the form of a two-dimensional nonlinear coupled oscillator, where the coupling is described by a power-law. Closed-form analytical expressions for solutions of these equations are not available, and thus the theoretical study of the system will concern analytical approximations and numerical computation. Multiscale methods will be used to derive modulation equations to describe spatially localized and time-periodic solutions, and error bounds for these approximations will be explored. In parametric regions where the derived analytical approximations are not valid, numerical computations will be employed. Three case examples are considered for experimental realizations: granular crystals, repelling magnets, and origami unit cells. An energy harvesting concept based on a magnetic lattice network will be designed, optimized, implemented, and benchmarked.
该项目旨在开发分析,计算和实验工具,用于研究一类特定的格型网络。在这项研究中特别感兴趣的是本地化和时间周期性的动态,这可以被利用为各种应用,包括振动能量收集。通过网络的几何形状和连接元件的非线性性质,可以观察到极其丰富的动力学,并通过与工程实验室合作提供的实验数据进行验证。研究结果可用于开发通过环境振动供电的宽带谐振器,目标是显着减少电池的使用。该项目中研究的模型具有二维非线性耦合振荡器的形式,其中耦合由幂律描述。这些方程的解的封闭形式的解析表达式是不可用的,因此该系统的理论研究将涉及解析近似和数值计算。 多尺度方法将被用来推导调制方程来描述空间本地化和时间周期性的解决方案,这些近似的误差范围将被探讨。在参数区域中,导出的解析近似是无效的,将采用数值计算。三种情况下的例子被认为是实验实现:粒状晶体,排斥磁铁,折纸单位细胞。基于磁晶格网络的能量收集概念将被设计,优化,实施和基准测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Chong其他文献

Modulation instability and wavenumber bandgap breathers in a time layered phononic lattice
时间分层声子晶格中的调制不稳定性和波数带隙呼吸器
  • DOI:
    10.1103/physrevresearch.6.023045
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Christopher Chong;Brian Kim;Evelyn Wallace;Chiara Daraio
  • 通讯作者:
    Chiara Daraio
On the Existence of Generalized Breathers and Transition Fronts in Time-Periodic Nonlinear Lattices
时间周期非线性格子中广义呼吸和过渡前沿的存在性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Chong;Dmitry E. Pelinovsky;Guido Schneider
  • 通讯作者:
    Guido Schneider
Discrete breathers in a mass-in-mass chain with Hertzian local resonators.
质中质量链中的离散呼吸器与赫兹局部谐振器。
  • DOI:
    10.1103/physreve.95.022904
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. P. Wallen;J. Lee;D. Mei;Christopher Chong;Panos Kevrekidis;N. Boechler
  • 通讯作者:
    N. Boechler
Rigorous description of macroscopic wave packets in infinite periodicchains of coupled oscillators by modulation equations
用调制方程严格描述耦合振子无限周期链中的宏观波包
A remark about the justification of the nonlinear Schrödinger equation in quadratic spatially periodic media
  • DOI:
    10.1007/s00033-007-7037-3
  • 发表时间:
    2007-12-22
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Carsten Blank;Martina Chirilus Bruckner;Christopher Chong;Vincent Lescarret;Guido Schneider;Hannes Uecker
  • 通讯作者:
    Hannes Uecker

Christopher Chong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Chong', 18)}}的其他基金

RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
  • 批准号:
    2107945
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Standard Grant

相似海外基金

Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
  • 批准号:
    2226666
  • 财政年份:
    2023
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Standard Grant
Extreme quantum nonlinear optics with strongly coupled atoms and photons
具有强耦合原子和光子的极端量子非线性光学
  • 批准号:
    RGPIN-2015-05920
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme quantum nonlinear optics with strongly coupled atoms and photons
具有强耦合原子和光子的极端量子非线性光学
  • 批准号:
    RGPIN-2015-05920
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme quantum nonlinear optics with strongly coupled atoms and photons
具有强耦合原子和光子的极端量子非线性光学
  • 批准号:
    RGPIN-2015-05920
  • 财政年份:
    2019
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
  • 批准号:
    1818861
  • 财政年份:
    2018
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
Extreme quantum nonlinear optics with strongly coupled atoms and photons
具有强耦合原子和光子的极端量子非线性光学
  • 批准号:
    RGPIN-2015-05920
  • 财政年份:
    2018
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Feedback control design and model reduction for strongly nonlinear systems
强非线性系统的反馈控制设计和模型简化
  • 批准号:
    138352-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Near-surface interactions between strongly nonlinear internal gravity waves
强非线性内部重力波之间的近地表相互作用
  • 批准号:
    1946028
  • 财政年份:
    2017
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Studentship
Extreme quantum nonlinear optics with strongly coupled atoms and photons
具有强耦合原子和光子的极端量子非线性光学
  • 批准号:
    RGPIN-2015-05920
  • 财政年份:
    2017
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了