Development of Statistical Methods for Analyzing Whole Genome Bisulfite Sequencing Experiment Data to Identify Differentially Methylated Regions
开发分析全基因组亚硫酸氢盐测序实验数据以识别差异甲基化区域的统计方法
基本信息
- 批准号:1615789
- 负责人:
- 金额:$ 23.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DNA methylation is a chemical modification to DNA that imparts information on how and when genes should be turned on or off. As such DNA methylation plays a vital role in many biological processes. There are many instances in which DNA methylation between samples is different. Examples are: 1) different organs (liver vs brain), 2) health vs disease (cancer exhibits methylation patterns that are different from those of healthy tissue), and 3) environmental responses (plants that endure heat and drought stress). These differences are known as differential methylation. Recently, technology has been developed to simultaneously query the millions of methylation sites in DNA. This technology, however, creates computational and statistical challenges. A pressing question in the field of biology is how to analyze the massive amount of data generated in this way so as to draw biologically relevant, and statistically sound conclusions, without requiring expensive computing equipment. The output of this project will provide statistical methods for detecting differential methylation. This information can then be used by specialists to understand cell function, develop therapeutic interventions, or tackle questions associated with environment such as climate change. Freely available statistical tools that can be used by all scientists interested in analyzing differential methylation will be developed. This interdisciplinary research project between the mathematical and biological sciences also supports the training of students in these fields. DNA methylation is an epigenetic modification that directs gene expression and chromatin conformation. The most common form of DNA methylation in vertebrates is an addition of a methyl group to a cytosine base that is directly followed by a guanine, which is referred to as a CpG site. There are approximately 30 million CpG sites in the human genome with an even larger combination of states of methylation. A differentially methylated region is a region in the genome where mean methylation levels of CpGs are different between two sample groups, such as disease versus normal. Bisulfite sequencing methods are typically used for measuring DNA methylation at CpG sites. Expansion of this technology to permit simultaneous query of all CpG sites, known as whole genome bisulfite sequencing, has created computational and statistical challenges. These include improving the capability to distinguish signals from noise in very large datasets, a current focus of much modern statistics. The project team will develop statistical methods to detect differential methylation between sample groups. Specifically, the methods in this research project improve existing approaches by recognizing and accounting for correlations among methylation sites based on their genomic locations. Such model assumptions ensure that statistical results are biologically meaningful and interpretable. In addition, the methods will borrow information across the whole genome to improve estimation and statistical testing reliability. Bayesian models with theoretical justifications will be developed and implemented using efficient and scalable algorithms to ensure their applicability to a wide variety of high-throughput methylation datasets. Methods will be implemented into software tools and will be freely available for biology and statistics researchers.
DNA甲基化是对DNA的一种化学修饰,它提供了关于基因应该如何以及何时打开或关闭的信息。因此,DNA甲基化在许多生物过程中起着至关重要的作用。在许多情况下,样本之间的DNA甲基化是不同的。例如:1)不同的器官(肝脏和大脑),2)健康和疾病(癌症表现出与健康组织不同的甲基化模式),以及3)环境反应(耐高温和干旱胁迫的植物)。这些差异被称为差异甲基化。最近,已经开发出同时查询DNA中数百万个甲基化位点的技术。然而,这项技术也带来了计算和统计方面的挑战。生物学领域的一个紧迫问题是如何分析以这种方式产生的海量数据,以便在不需要昂贵的计算设备的情况下得出与生物学相关的、统计上可靠的结论。该项目的成果将为检测差异甲基化提供统计方法。然后,专家可以使用这些信息来了解细胞功能,开发治疗干预措施,或解决与环境有关的问题,如气候变化。将开发可供所有对差异甲基化分析感兴趣的科学家使用的免费统计工具。这一数学和生物科学之间的跨学科研究项目也支持对这些领域的学生进行培训。DNA甲基化是一种表观遗传修饰,它引导基因表达和染色质构象。脊椎动物中最常见的DNA甲基化形式是在胞嘧啶碱基上添加甲基,紧随其后的是鸟嘌呤,这被称为CpG位点。在人类基因组中,大约有3000万个CpG位点具有更大的甲基化状态组合。差异甲基化区域是基因组中CPGS的平均甲基化水平在两个样本组之间不同的区域,例如疾病和正常。亚硫酸氢盐测序法通常用于测量CpG位点的DNA甲基化。这项技术的扩展允许同时查询所有CpG位点,即所谓的全基因组亚硫酸盐测序,这带来了计算和统计方面的挑战。这些措施包括提高在非常大的数据集中区分信号和噪声的能力,这是许多现代统计学目前关注的焦点。该项目团队将开发统计方法来检测样本组之间的差异甲基化。具体地说,该研究项目中的方法通过识别和考虑基于其基因组位置的甲基化位点之间的相关性来改进现有的方法。这样的模型假设确保了统计结果具有生物学意义和可解释性。此外,这些方法将借用整个基因组的信息,以提高估计和统计测试的可靠性。将使用高效和可扩展的算法开发和实施具有理论合理性的贝叶斯模型,以确保它们适用于各种高通量甲基化数据集。这些方法将被应用到软件工具中,并将免费提供给生物学和统计学研究人员。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conditions of embryo culture from days 5 to 7 of development alter the DNA methylome of the bovine fetus at day 86 of gestation
- DOI:10.1007/s10815-019-01652-1
- 发表时间:2019-12
- 期刊:
- 影响因子:3.1
- 作者:Yahan Li;P. Tríbulo;M. Bakhtiarizadeh;L. Siqueira;Tieming Ji;R. M. Rivera;P. Hansen
- 通讯作者:Yahan Li;P. Tríbulo;M. Bakhtiarizadeh;L. Siqueira;Tieming Ji;R. M. Rivera;P. Hansen
Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance
- DOI:10.1016/j.jgg.2020.02.002
- 发表时间:2020-02-20
- 期刊:
- 影响因子:5.9
- 作者:Johnson, Adam F.;Hou, Jie;Birchler, James A.
- 通讯作者:Birchler, James A.
Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model
- DOI:10.1186/s12859-019-3141-6
- 发表时间:2019-10-28
- 期刊:
- 影响因子:3
- 作者:Xie, Jing;Ji, Tieming;Rivera, Rocio M.
- 通讯作者:Rivera, Rocio M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tieming Ji其他文献
Detection of Early Molecular Response (EMR) and Minimal Residual Disease (MRD) in Patients with Diffuse Large B-Cell Lymphoma (DLBCL) Using a Validated Next Generation Sequencing (NGS) Assay for the Detection of Tumor Variants in Circulating Tumor (ct)DNA
使用经过验证的下一代测序 (NGS) 检测循环肿瘤 (ct)DNA 中的肿瘤变异来检测弥漫性大 B 细胞淋巴瘤 (DLBCL) 患者的早期分子缓解 (EMR) 和微小残留病 (MRD)
- DOI:
10.1182/blood-2022-162814 - 发表时间:
2022 - 期刊:
- 影响因子:20.3
- 作者:
R. Stokowski;Ehsan S. Tabari;P. Bogard;C. Hacker;Olga K Kameneva;Tieming Ji;Li Teng;V. Melnikova;R. McCord;E. Punnoose;Robert Loberg;Junaid Shabbeer - 通讯作者:
Junaid Shabbeer
Modeling the next generation sequencing read count data for DNA copy number variant study
为 DNA 拷贝数变异研究建模下一代测序读取计数数据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Tieming Ji;Jie Chen - 通讯作者:
Jie Chen
Computational Identification of Cis-regulatory Elements Associated with Pungency of Chili Peppers
与辣椒辣味相关的顺式调控元件的计算识别
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Tieming Ji;D. Ranjan;J. Curry;M. O'Connell - 通讯作者:
M. O'Connell
Transcriptome Changes in Response to Cold Acclimation in Perennial Ryegrass as Revealed by a Cross-Species Microarray Analysis
跨物种微阵列分析揭示多年生黑麦草对冷驯化反应的转录组变化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chunzhen Zhang;Shui‐zhang Fei;Peng Liu;Tieming Ji;Jiqing Peng;U. Frei;D. Hannapel - 通讯作者:
D. Hannapel
Tieming Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tieming Ji', 18)}}的其他基金
Collaborative Research: Development of New Statistical Methods for Genome-Wide Association Studies
合作研究:全基因组关联研究新统计方法的开发
- 批准号:
1853556 - 财政年份:2019
- 资助金额:
$ 23.97万 - 项目类别:
Standard Grant
相似海外基金
Use of deep learning and development of statistical prediction result evaluation methods for the acceleration of personalized medicine
利用深度学习和开发统计预测结果评估方法加速个性化医疗
- 批准号:
23K11014 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
- 批准号:
2326317 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Standard Grant
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of general statistical methods for estimating gust wind speed in different urban morphology and weather conditions based on the Weibull distribution
基于威布尔分布的不同城市形态和天气条件下阵风风速估算通用统计方法的发展
- 批准号:
23K13454 - 财政年份:2023
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
- 批准号:
10568744 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别:
Development of statistical methods that help to interpret randomized clinical trials
开发有助于解释随机临床试验的统计方法
- 批准号:
22K17301 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Prize 202203PJT - The test-negative design for the estimation of COVID-19 vaccine effectiveness: design evaluation and development of statistical methods in the evolving context
奖 202203PJT - 用于估计 COVID-19 疫苗有效性的测试阴性设计:不断发展的背景下统计方法的设计评估和开发
- 批准号:
467985 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别:
Operating Grants
Novel Statistical Methods for Development of Polygenic Scores in Multi-Ancestry Cohorts
多祖先队列中多基因评分开发的新统计方法
- 批准号:
10794931 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别:
The test-negative design for the estimation of COVID-19 vaccine effectiveness: design evaluation and development of statistical methods in the evolving context
用于估计 COVID-19 疫苗有效性的测试阴性设计:不断变化的背景下统计方法的设计评估和开发
- 批准号:
462230 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别:
Operating Grants
Novel Statistical Methods for Development of Polygenic Scores in Multi-Ancestry Cohorts
多祖先队列中多基因评分开发的新统计方法
- 批准号:
10464189 - 财政年份:2022
- 资助金额:
$ 23.97万 - 项目类别: